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ABSTRACT A population that is strongly self-regulating
through density-dependent effects is expected to be such that,
if many generations have elapsed since its establishment, its
present size should not be sensitive to its initial size but should
instead be determined by the history of the variables that de-
scribe the influence of the environment on fecundity, mortality,
and dispersal. Here we discuss the dependence of abundance
on environmental history for a semelparous population in which
reproduction is synchronous. It is assumed that at each instant
t: (i) the rate of loss of members of age a by mortality and dis-
persal is given by a function p of t, a, and the present number
x = x(a,t) of such members; and (ii) the number x(Ot) of mem-
bers born in the population is given by a function Fof t and the
number of x(aft) at a specified age af of fecundity. It is further
assumed that the functions p and F have the forms p(xat) =
wrj(a,t)x + wr2(a,t)x2 and Fx(aft),t) = vtx(aft). For such a pop-
ulation, a change in the environment is significant only if it
results in a change in vt, rj(at), or r2(at), and, hence, the his-
tory of the environment up to time t is described by giving v,.
ir(a,r), and r2(a,T) for each 'r < t and all a in [O,af]. We show
that the dependence of x on the history of the environment can
be calculated explicitly and has certain properties of "fading
memory"; i.e., environmental events that occurred in the remote
past have less effect upon the present abundance than compa-
rable events in the recent past.

The ecological literature contains many statements of the
proposition that established populations are self-governing
systems that have regulated their size in accord with their own
properties and those of their environments (e.g., refs. 1-6).
When a population that is strongly self-regulating through
density-dependent factors has been in existence for many
generations, its abundance should depend not upon initial data
but rather upon the history, particularly the recent history, of
the variables that describe the influence of the environment.
This suggestion was recently (7) made precise and explored for
a model in which the nonlinear functional giving the depen-
dence of abundance upon environmental history can be cal-
culated explicitly and shown to be of a type occurring in the
"theory of fading memory"-a mathematical theory of the
general behavior of systems for which the present influence of
events that occurred in the remote past is much weaker than
the influence of comparable events in the recent past (8-11).
The model of ref. 7 leads to a logistic equation with r and K

functions of time whose values describe the influence of the
environment. Such a model does not account for a possible ef-
fect of age structure-i.e., a dependence of overall rates of fe-
cundity, mortality, and dispersal upon the distribution of ages.
Here, however, we are concerned with populations for which
age structure is important because we consider species for which
reproduction occurs only once in an individual's life and then
only at a precisely defined age offecundity a1 (also called the
"reproductive age"). Such is the case for annual plants and
many species of animals, particularly in the class Insecta.
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Using a theoretical framework developed in refs. 12-14, we
here make the following assumptions:

(i) The net rate at which the population loses individuals of
age a at time t through mortality and dispersal is given by a
function p of t, a, and the number x(a,t) of members of the
population that have age a at time t; p is called the loss func-
tion.

(ii) The number x(O,t) of individuals born in the population
at time t is given by a function F of t and the number x(af,t)
of members at the age of reproduction; F is called the fecundity
function.

If we use a unit of time such that af = 1, then assumptions
(i) and (ii) are rendered mathematical by writing:

Dx(a,t) + p(x(a,t),a,t) = 0 [1]
and

x(O,t) = F(x(l,t),t), [2]
in which

Dx(a,t) d (a + h, t + h)hAh" h=o
[3]

is the negative of the net rate at which the population loses, at
time t (by the overall effects of death, immigration, and emi-
gration), members that have age a at that time. For a detailed
discussion of the relation of these equations to those used by Von
Foerster (15), Gurtin and MacCamy (16), Hoppensteadt (17),
and Griffel (18), see the article of Coleman (12).

Assumption (i), which yields Eq. 1, is equivalent to the as-
sertion that the intraspecific interactions that influence mor-
tality and dispersal occur only between individuals of equal age.
For a semelparous population for which reproduction is sea-
sonal, synchronous, and followed by parental mortality, the
assertion holds well; in such a population the distribution of ages
is narrow, and a member with age in (0,1) [i.e., in (O,aj)] can
interact only with members of the same age, for individuals of
other ages are not simultaneously present. Eqs. 1 and 2 do have
solutions in which the distribution of ages is narrow at all times
(this point is discussed in detail in ref. 14), and it is such solutions
that interest us here.

In refs. 12 and 13 it was assumed that p(x,a,t) and F(x,a,t)
are independent of t, and in ref. 14 it was assumed that p(xa,t)
and F(x,a,t) are periodic in t with integral period. No such as-
sumptions of temporal constancy or periodicity are made here,
but, for simplicity, we assume that the dependence of p(x,a,t)
on x has only a linear and a quadratic term, i.e.,

p(x,a,t) = 7rl(a,t)x + 7r2(a,t)x2,
and that F(x,t) is linear in x, i.e.,

F(x,t) = vtx.

[4]

[5]
We assume that for each integer n, the functions *n,1 and An,2,
defined by

*n,(a) = 7r(a,n + a), n,2(a) = 7r2(a,n + a), (6]
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are continuous and that *n,2 is not negative on [0,1]. We further
assume that Vt is (strictly) positive whenever t is an integer. (For
species with synchronous, seasonal, reproduction, Vt will be zero
unless t is an integer.) The discussion below will show that for
each n, the functions *n,1 and Wn,2 determine the influence of
the environment on the survival of the population during the
nth generation and vn is a measure of fecundity of the (n - 1)th
generation.

Let On be the set of all individuals of the given species born
at time t = n in either the observed population P or in other
populations from which they can be attracted into P. Argu-
ments given in refs. 13 and 14 can be applied here to show that
Eqs. 1, 3, and 4 yield the following formula for the number x(a,
n + a) of members of On that are present in P at time t = n
+ a as a function of their age a and the number x(0, n) of
members of Cn born in P:

lim sup x(a, n + a) = 0.
n-- O~a<l

[17]

Let us suppose now that none of numbers Cn,m is zero and,
as n increases, Cn,m remains bounded away from zero and in-
finity-i.e., that

inf Cn,m > 0 and sup Cnm <0.
n n

[18]

Eq. 14 then yields, for x > 0,

1~- Hn~m(x) = 1> 0, [19]
Cn,1n [1 + AnmCn,mx]Cn,m

and from this relation we may read off our main result: If, as
n a oo, Anm a- 00, then, for each positive value xm of the
"initial" adult population x(1, m + 1),

x(a, n+ a) = 1 + (0 n)yn(a)' [7]

here

Xn(a) = exp (- *n,1(T)dT) > 0

lim 1
- Hn m(Xm)I = 0.

n--,o Cn,m
[20]

In view of Eq. 13, this theorem tells us that if, as n increases,
An,m - 00, then the number xn = x(1, n + 1) of adults present
in P during the nth generation On will be, for large enough n,

[8] very close to C"-I, i.e.,

and

yn(a) = XJIn()rn2(r)dr 2 0. [9]

Let x,, be the number of adults of the nth generation en that
are present in the population P; these individuals have age a
= af = 1 at time t = n + 1; i.e., xn = x(1, n + 1). Because Eqs.
2 and 5 yield x(0, n) = F(x(l, n), n) = F(xn-i, n) = VnXn-1, we
have, by Eq. 7,

x(a, n + a) - 1 + xn- ivnyn(a) [10]

In the special case of a = 1, this last relation reduces to
anxn-1

with
an = Xn(l)vn > 0, O3n = Yn(l)vn 2 0. [12]

Let m and n be two integers with n > m. By successive ap-
plications of Eq. 11 one can express the number x. of adults
present in P in the nth generation as a function of the number
Xrn adults in P in the mth generation:

xn= Hnm(x.). [13]

An elementary calculation shows that here Hn m has the
form

in which

and

Hn m(x) = An~mx
1 + An,mCn,mX

n n-m-1
Anmn = rH k = Ir an-j >O

k=m+I j=O

n-m-1 Aln-j 2 0.

Cnm =0 an°>*
j=0 an an-1 ... an-j

We consider first the case in which m is fixed, XM is known,
and one is interested in the behavior of the population as n in-
creases without bound.
The following theorem follows forthwith from Eqs. 10 and

13-16: If, as n 00, either Anm 0 or Cn,m o0 (or both),

then the population is endangered in the sense that, no matter
how large its "initial" adult membership xm,

lim [x(1, n + 1) C-'mI = 0,

and for each age a in [0, 1] we shall have, by Eq. 10,

lim [x(a, n + a) - Xnr(a)] = 0,
n Ado-c

[21]

[22]

in which the limiting "abundance function" or "age-distribu-
tion function," Xn,,,, has the form

X.,. (a) = IV Xn (a) [231
Cn-l,m + vn'Yn(a)'

with Xn and yn as in Eqs. 8 and 9. We note that the limiting
abundance function Xn,m is completely independent of the
initial number of members of the population P and their age
distribution. In fact, Xn,rn is determined when one specifies the
functions *n,1 and 7rn,2, which measure the influence of the
environment on the population during the nth generation, and
the ratio vn/Cn-i,m, which is, from the point of view of the nth
generation, a property of the past history of the environ-
ment.

Eqs. 20 and 21, which assert that, for each integerm and each
xrn > 0, the numbers Xm+k = H In+ k,m(Xm) approach C-m +km
ask increases without bound, is illustrated in Fig. 1, where there
are graphs of Xm+k against k for three values of xrn. For these
calculations, as well as those shown in Figs. 2 and 3, we used a
single randomly generated list of the pairs (an, 3n), with an
drawn from the uniform distribution on the interval (0, 4) and
3n from the uniform distribution on (0, 10-2). The numbers
Xm+k, for k = 1,2,. .., 15, were obtained by successive itera-
tions of Eq. 11, with the initial value of xn-1 taken to be xm =
1, 100, and 200.

In Fig. 1 we see a case in which, although the "environment"
fluctuates rapidly from generation to generation and, hence,
the size of the population fluctuates rather wildly, the number
Xm+i5 of adults in the population after 15 generations is not at
all sensitive to the "initial" number xm of adult members. In
this example, fluctuations in environmental factors (which here
are measured by the coefficients an and En) have a marked
effect on population levels, but nonetheless the population is
self-regulating in the sense that, after the passage of a few
generations, present abundance is essentially independent of
initial abundance. These calculations confirm a point made by
Nicholson (5) in his debate with the abiotic school (see, e.g., ref.
19) of population regulation: The correlation of abundance with
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FIG. 1. Adult membership Xm+k in the (m + k)fh generation
plotted against k for a representative population in a randomly
varying environment with a°m+k drawn from the uniform distribution
on (0,4) and 13m+k from the uniform distribution on (0,10-2). O --- 0,
xm = 1; X-X,xm = 100; O13 , m = 200.

environmental factors does not imply the absence of self-reg-
ulation through density-dependent terms.

Let us now take the point of view of the nth generation, and
let n be held fixed while m varies over the integers less than n.
If we assume, as we shall, that the functions 1m,1 and *in,2 and
the numbers Vm have been specified for all values ofm previous
to n, that fil and Oin-, are positive, and that

Anm - 0 as m -c-, [24]

then we shall see that the population is either empty or may be
regarded as having "existed forever," in which case its size is
determined by the history of its environment. Indeed, it follows
from Eq. 14 that if we define Hn(x) to be

Hn(x) = lim Hn m(x), [25]

then Hn(x) exists for x > 0. Clearly, Hn(O) = 0. For x > 0,
Hn(x) is, by Eq. 19 and the relation 24, equal to the (finite)
number C'1, with

Cn = lim C'm. [26]
T h ,f r

Thus, in view of Eq. 16, we have, for every x > O.
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FIG. 2. Plot of Hn n-N(x) against x forN = 1, 5, and 10, calcu-
lated from Eqs. 14-16 by using coefficients an-k, %ln-k taken from the
randomly generated list used for Fig. 1 with n = m + 15.

Of interest, of course, is the case in which C1, is finite; in that
case Eqs. 13, 25, and 27 tell us that the number x(1, n + 1) of
adults present in P in the nth generation is either zero or the
positive number

= C-1.Xn n- [28]
[When Cn is finite, xn will be zero if and only if xm = 0 for all
m < n, which corresponds to taking the value of Hn(x) at x =
0; if there is at least one m < n with xm > 0, then xn = Hn(x)
for an x > 0, and Eq. 28 holds.] Moreover, if the population is
not empty, substitution of Eq. 28 into Eq. 10 yields

x(a, n + a) =X(a), [29]
in which X' is a canonical abundance function that is inde-
pendent of initial data and is given by the formula

X "'(a ) = C _ +~vnnX1
n(a)

n Cn I+ vn'Yn(a) ' [30]

If we note that when C,-I is finite, Cn-i,m is approximately
equal to C"_1 for large values of (n - 1) - m, and if we note
further that Eqs. 22 and 23 describe a situation in which n -
m is large, then it becomes clear that Eqs. 22 and 23 are com-
patible with Eqs. 29 and 30.
The canonical abundance function X* gives the age distri-

bution in a population that has "existed forever." For each a
in [0, 1] there holds

Hn(X) = C-' = ffn-i
j=o tn an-I ..*a(n-j

[27]

In other words: If the monotone increasing sequence N l-o
Cn,n-N has a finite limit Cn as N 00, then for every x > 0,
Hn(x) equals the positive number C'n -

If Cn~n-N - o as N -*00, then Hn(x) = 0 for all x; i.e., the
population cannot have existed for all time and is in fact empty
when t = n.

lim Xn n-N(a) = Xn (a);
N--Adc

[31]

i.e., X.,.-N(a) gives, for large N, an approximation to Xn (a).
This approximation is useful because Cn-i m in Eqs. 23 is given
by a finite series, whereas C,,- in Eq. 30 requires for its cal-
culation the evaluation of an infinite series. Similarly, the
functions Hnn-N, with N again large but finite, give approx-
imations to Hn.

Population Biology: Coleman and Hsieh
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FIG. 3. Hn n-N(l) plotted against N with an-k and 13n-k as in
Fig. 2.

The following question now arises: Granted the relation 24,
how large must N be (i.e., how many generations back in time
must data and calculations be taken) in order that Hn n-N(x)
be, for x > 0, a good approximation to Hn(x)? Calculations that
bear on this question are shown in Figs. 2 and 3.

Fig. 2 contains graphs of Hn n-N(X) against x for N = 1, 5,
and 10, calculated from Eqs. 14-16 with the pairs (aCn-J, 3n-j),
with j = 0,1,2, . . , taken from the same randomly generated
list used for the construction of Fig. 1. [In fact, this list contained
100 pairs (al, fl), and whereas in Fig. 1 the fixed index m
corresponds to 1 = 85, the fixed index n in Fig. 2 corresponds
to 1 = 100.] The arrow labeled N = co in Fig. 2 indicates the
height of the function Hn which is constant on (0, co) and whose
value was obtained from Eq. 27 with 100 terms in the sum
shown there. It is clear from Fig. 2 that, for population in a
"random environment" such that an- varies uniformly over
(0, 4) and fln-j varies uniformly over (0, 10-2), Hn nN gives
a useful approximation to Hn when N is as small as 10. Indeed,
Eq. 27 here yields the value 358 for Hn(x), the "present" adult
membership of the population; if one were to assume that in
the 9th, 10th, 11th, or 12th generation previous to the present
generation the population contained only one adult member,
the calculated adult membership of the population in the
present generation would be, respectively, Hn n-9(1) = 327,
Hn n-10 (1) = 350, Hn"n-1' (1) = 324, or Hn n-12 (1) = 338,
and each of these numbers is close to the actual value Hn(x) =
358. The dependence of Hn n-N(l) on N is shown in more
detail in Fig. 3.
The fact that Hn n-N(x), with N finite, gives a good ap-

proximation to Hn(x), even for very small x, confirms the as-

sertion that the dependence of abundance on environmental
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history has, at least for the present model (as well as that dis-
cussed in ref. 7), a property of fading memory: One need know
the environmental history only over a finite span of time, ex-
tending from the present back into the recent past, to obtain a
good estimate of population size.
The number

Kn = (a. -)/fn [32]
is the (unique) positive fixed point of the function H""-I that,
by Eq. 13, takes xn_- into x,. Kn can be called the "carrying
capacity of the environment of the nth generation." For the
example of Figs. 2 and 3, Kn = 359.9; i.e., if the population had
contained approximately 360 adult members at the end of the
(n -1)th generation, there would have been that number of
adults produced in the nth generation. The actual number of
adults present at the end of the nth generation, assuming the
population existed forever in the changing environment under
consideration, is Hn(x) (for any x > 0), and this number here
turned out to be 358. In general, in a fluctuating environment
Hn(x) will not be close to Kn for every n. However, changes
in xn,- here "correlate" with Kn-xn,- in the sense that, for
each n, xn -xn-I must have the same sign as Kn-xn-; i.e.,
in the course of one generation, say the nth, the population xn
of adults can show an increase only if the number x,¢-I of adults
present in the previous generation lies below the present
carrying capacity.

Acknowledgment is made to the National Science Foundation and
to the Donors of The Petroleum Research Fund, administered by the
American Chemical Society, for support of this research.

1. Woodworth, C. W. (1908) Science 28,227-230.
2. Howard, L. 0. & Fiske, W. F. (1911) The Importation into the

United States of the Parasites of the Gypsy Mothand the-Brown
Tail Moth, USDA Bur. Entomol. Bull. 91, (U.S. Dept. Agric.,
Washington, DC).

3. Nicholson, A. J. (1933) J. Anim. Ecol. 2, 132-178.
4. Nicholson, A. J. (1954) Aust. J. Zool. 2,9-65.
5. Nicholson, A. J. (1958) Annu. Rev. Entomol. 3, 107-136.
6. Clark, L. R., Geier, P. W., Hughes, R. D. & Morris, R. F. (1967)

The Ecology of Insect Populations in Theory and Practice
(Methuen, London).

7. Coleman, B. D. (1979) Math. Biosci. 45, 159-173.
8. Coleman, B. D. & Noll, W. (1960) Arch. Rational Mech. Anal.

6,355-370.
9. Coleman, B. D. & Noll, W. (1961) Rev. Mod. Phys. 33, 239-

249.
10. Coleman, B. D. (1964) Arch. Rational Mech. Anal. 17, 1-46;

230-254.
11. Coleman, B. D. & Mizel, V. J. (1966) Arch. Rational Mech. Anal.

23,87-123.
12. Coleman, B. D. (1978) J. Math. Biol. 6, 1-19.
13. Coffman, C. V. & Coleman, B. D. (1978) J. Math. Biol. 6,

285-303.
14. Coffman, C. V. & Coleman, B. D. (1979) J. Math. Biol. 7,

281-301.
15. Von Foerster, H. (1959) in The Kinetics of Cellular Proliferation,

ed. Stohlman, F. (Grune & Stratton, New York), pp. 382-407.
16. Gurtin, M. E. & MacCamy, R. C. (i974) Arch. Rational Mech.

Anal. 54, 281-300.
17. Hoppensteadt, F. (1975) Mathematical Theories of Populations:

Demographics, Genetics, and Epidemics (Soc. Ind. Appl. Math.,
Philadelphia).

18. Griffel, D. H. (1976) J. Inst. Math. Appl. 17, 141-152.
19. Andrewartha, H. G. & Birch, L. C. (1954) The Distribution and

Abundance of Animals (Univ. Chicago Press, Chicago).


