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ABSTRACT 

In this work, we propose a population model of difference equations to explore the phenomenon of 
periodicity which occurs frequently among biological populations, most notably in species of plants and 
insects. 

Local stability analysis was made to determine the conditions under which the population will be- 
come periodical. The analysis was done for the cases of populations with 2 and 3 age-classes, and numerical 
simulations were made for the latter case to ensure its global properties. For the case of population with 
more than three age-classes, we used numerical examples to highlight the similarities and differences. 

Key words: periodical population, stable equilibrium, semelparous species 

1. Introduction tween individuals of the same age-class. 
In his work on periodical insects, Bulrner [2] con- 

A biological population is said to be periodical if the cluded that the relative intensity of competition among 
life cycle of the individuals in the population has a fixed the individuals of the population has a decisive influence 
length of k time units, with k> 1 an integer, where the on whether the population will tend to be a periodical 
time unit may be in terms of year, month, day, or minute population or not. 
and if reproduction occurs only once at the end of the in- For his periodical insect model, Bulmer assumed 
dividual's lifetime.(') Species with such phenomena are that the competition that effects the survival rate of an 
known as "semelparous" species [3] and occur frequently individual comes from other individuals existing in the 
in many species of animals and plants, especially in insect population at the same time as the individual in question. 
species such as periodical cicada [7] or the May beetle However, in many instances, the individuals of different 
(Melolontha spp.) [ 6 ] .  age-classes appear in different form at different stages of 

In many cases, all but one of the age-classes are eli- their lifetimes, require different kinds of food resource, 
minated although it is possible for several of the age-classes attract different predators and occupy a different type of 
to coexist, as in the case of the pink salmon (Oncorhyncus habitats. For example, the effect of adult fishes on the 
gorbuscha) or the wood cricket (Nemobius sylvestris) [I ,  survival rate of fish eggs at any time might not be directly 
91. dependent on the present number of the adult fishes, but 

It is then common to divide the members of the on the number of that age-class when they were in egg 
periodical population into k reproductively isolated age- form, since the more numerous they were, the more likely 
classes with Ni(t) being the number of individuals of the it was to attract predators to their natural habitat in the 
population in the i-th age-class at time t ,  t a n  integer. It future. This is also competition, although the effect is 
has been suggested [4, 61 that periodical behavior might delayed for some time. Similar phenomena also occur in 
be the result of competitive exclusion between individuals many species of insects. Therefore it is reasonable to in- 
of the population, particularly when the competition is vestigate this delayed effect of competition from ances- 
stronger between individuals of different ages than be- tors on the periodical behavior of a population. 

In Section 2, we propose a nonlinear difference 
(1) In cases where the individuals reproduce at a precisely deFmed equation model which takes into account this delayed 

"age of fecundity" and continue to live without reproduction competition from other members of the population. Set- 
for the rest of their lifetimes, we can follow a practice com- tionS and are devoted to the discussion of this model 
monly used and assume that their age of fecundity is the 
length of their lifetimes since they can be considered as incon- in the cases the life k, and 3, respec- 
sequential to the growth of the population once past thek re- tively. In Section 5, we give numerical examples to illu- 
productive age. strate the cases where the general model for k> 3 are 
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sirnllar or different from the earlier analysis and discuss First, let us consider a restriction on the values of 
the ecological significance of the results obtained from the mean reproduction rate B and the survival rates Si. 
this model. 

2. The Model 

Note that for t integer and for j = 1 , 2 ,  . . . . , k-1 . 
s . N  l ( t )  

?(t+l) = +- < Si q l ( t ) >  (2.3) 
1 t 2 7i Nj-1 (t-Z> 

i= 0 
Let Nj (t)  be the number of individuals of the jth 

age-class of a population counted at the beginning of the and thus 
time unit t, t an integer. Consider the following equa- k-l 
tions: Nk-1 (t+k) < (.n 1 = 1  SiW0 ( t+l) .  

BNk-1 ( t )  
No(t+l) = k-1 a )  Since 

1 + C C+ Nk-l (t-i), i= 0 
Nk-l(t) < B Nk-l(t), No(ttl)= k-1 

si+ ' Ni(t) , j=o , I , . .  . . , k-2. (2.2) 1 t  Z f f i  Nk-l(t-i) 
Ni+l( t+l)= k-1 i= O 

1 + z yi Nj(t-i) 
i= 0 combining (2.4) and (2.5), we get 

Here St+! is the probability that an individual of age j 
will survive to the end of the time unit in absence of 
competition, B is the mean reproduction rate (2) of an 
adult (of age k-1) at the end of its lifetime, ari > 0 is the 
"competition coefficient" which specifies the amount of 
effect an adult i time units before (i.e., at time t-i) has on 
the survival rate of an adult, and yi > 0 is the correspond- 
ing competition coefficient for a non-adult individual 
(of age 0 to k-2) i time units before has on an individual 
of the same age-class(3). 

The denominator terms on the right-hand sides of 
equations (2.1) and (2.2) account for the influence of all 
population members on the chance of survival of each in- 
dividual. They take into account the effect of the other 
members of the population present at time t when they 
were of the same age-class as the individual in question, 
if they were older than the given individual; and the 
effect of their direct ancestors in the preceding genera- 
tion if they were younger. Thus the denominators in 
(2.1) and (2.2) cover the delayed competition from all 
the population members present at time t on any given 
individual when they or their immediate predecessors 
were of the same age as the said individual. 

As a convention, the number of the population at 
time t will be given in terms of an age composition vector: 

a 

k-1 
Nkml(t+k) < B( n Si)Nk-l(t), for each integer t 

i= 1 

k-1 
(2.6) 

If B a Si = M < 1, then, for all integer values o f t ,  
i= 1 

Nk,l(t+kn) < Nk-l(ttk(n-l)) for positive integers 
n.  Let { ~ ~ - ~ ( t t k n ) )  := be a sequence of the k-1 th age- 
class at time t + h  for n=l ,  2 ,  . . . , if Nk-l(t) is the k-lth 
age-class at time t .  It is a strictly decreasing sequence 
bounded below by 0 and Nk-l ( t t k n w  as n* provided 
Nk-l(t) is bounded. , (2.7) 

k-1 
For the case when B n Si = 1 ,  consider that 

i= 1 

The together with (%$4)@ive us, for all t > 0 ,  

k-1 nr 1' I 
when B a Si=,l , . ,  . 

i= 1 

a r o > O  Note that the function fo =- 
1 taro N,  

has N = 0 as its only nonnegative fixed point. 
N(t) = Hence the sequence { N ~ - ~  (t tkn)) is strictly decreas- 

ing and decreases to 0 as n +=. 
(2) The mean reproductive rate B is used to denoted B* Sk, where Therefore we have the following theorem: 

Sk is the probability that an individual of age k-1 will survive 
to the end of its lifetime and B* is the average number of 2'1 
newborns by an individual at the end of its lifetime. 

(3) Note that we do not distinguish non-addults of different age 
A population as described in (2.1) and (2.2) will 

lr-1 
classes in the sense that they have the same competition not become extinct only ifB 'ha Si > 1 
coefficient. This is a simplification which shall have no i= 1 
effect on the conclusions of this work. 
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k-1 
As was given in the theorem, B IT Si > 1 is only a (3.5) can be written as 

i= 1 
necessary condition; in no way does it guarantee the X(m+l) = {((;LX(m)), 

'L 

survival of a population, much less its periodicity. As was where the vector-valued function F: lR4 + IR4 is defined 
noted in Bulmer [2], the periodical behavior of popula- as: 
tions of this type depends very much on the relative 
intensity of competition. To analyze further, we shall 
first consider the relatively simple case when n is small. 

3. Analysis of the Case k=2  

The model for k = 2 can be written as follows: 
B Nl(0  

1 tq, N,  (t) t n1 N1 (t-1) ' 

The model has a periodical equilibrium with the From (3.3), we know that 

population alternating between nl and A 1s [J A A 
A BS1-1 " BS1-l and n2 I with n l =  

Yo +S1 no ffo -+By0 ' (3.3) 

(Note that the condition in Theorem 2.1, B Sl > 1, 
A 

A A quarantees that nl , n2 are positive). 

It is clear that in this equilibrium the population is ' A  
periodical, existing only in the 1st or the 2nd age-class n 1 

alternatively. To investigate its stability, let us consider a 
vector-valued function i.e. O is a fixed point for [(.). 

0 
$ : Z + W 4  definedby 

A 
n 2 

No (2m) To study the local stability of the fixed point, we 

'L x(m) = ['(2m) ~ ( 2 m  t l ) ] = k ( 2 m )  No (2m+l) , m integer. use i l o i l  linearization method to obtain: 
N1 (2mtl) (3.4) 

Then from (3.1) and (3.2), we get 
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age-class present is an attractor if and only if g > a0 . 
The only other non-zero fixed point of equation 

after elementary but complicated computation. 
The matrix in (3.8) has eigenvalues 

with zero being a double root of the characteristic equa- 
tion. 

A A 
Using the values of nl  and n ,  in (3.3), we know 

that 

It is the only attractor when al < ao. Therefore, the 
system converges to a periodical equilibrium when al > 
a. and a stationary equilibrium when al < a 0  . and 

(2) 71 + r0 = = a. 

The situation is similar to that of case (1). Here 

(3.1 1) becomes (a+B , which is greater 
[(-Yo -71 + Sl (a+B 7o)l  

than 1 when 70 > and less than 1 when 70 < r l .  
Again, the system converges to the periodical equilibrium 
given in (3.3) when 7 0  < yl ; and when 7 0  > r l ,  the For the fixed point to be an attractor, we need 

p@), the magnitude of the largest eigenvalue of the 
matrix in (3.8), to be less then unity. From (3.9), (3.10), 
and (3.11), we know that this is the case if and only if 
the expression in (3.11) is less than 1. It is clear that this 
depends on the relative size of the competition coef- 
ficients, q's and /̂ib. Hence, we will discuss them case by 
case. 

* 

system converges to the stationary equilibrium 

(1) a1 #ao,71 '70 '7. 

The term in (3.1 1) then becomes 

(3) a0 =a1 =a,yo =71 =7. 

Here (3.11) becomes 
which is greater than 1 when a. > al and less than 1 
when a. < al . Thus the periodical equilibrium with one 
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Hence, the periodical equilibrium with one age-class 
present is a stable equilibrium but not an attractor. 

In this case, there is an infinite number of non-zero 

equu r i a  ':I satisfying the relation 

A  
N3 

We note that (3.3) is a special case of the above relations 

A  A  
when N3 = Nz = 0. We note further that relations (3.14) 
also include the case of stationary equilibrium with 

A A A A  (3.1 5) 
In fact, all sets of ( N, , N,, N3, N4 satisfying (3.14) 
are stable equilibria of the system and the set A C lR4 

A A A A  A A A A  
with A = ( ( ~ 1 ,  NZ , ~ 3 ,  ~ 4 )  I N1, Nz , N3, N4 satisfying 
(3.14) 1 constitutes an invariant set which is a global 

Eliminating b and d from (3.17), we get the simple equa- 
tion for a and c: 

si (c-a) [~o(ao-ai ) (eta> + (ao-a1 )+B(Yo-~I )I = 0 

(3.18) 
Thus we have two solution: 

Note that when al < q, and 7, < 70, the second solution 
in (3.19) is negative, thus the only positive equilibrium 
is the stationary equilibrium with 

attracto; for equation (3.6). 

Here (3.11) can be rewritten as 

and 

Since this is the only choice of non-zero equilibrium 
which is stable, it must be an attracter and the system 
becomes stationary when al <ao and 71 < 70. 

The situation becomes more difficutl when (a1 -ao)* 
(71- yo) < 0, since the magnitude of p@) then depends on 
the relative size of the parameters ao,  a l ,  70, 71, B, and 
S1. Furthermore, when (al-%) (yl-yo) < 0, the second 
solution in (3.19) could be positive; that is, there could 
be a non-stationary equilibrium for the system, in addi- 
tion to the Stationary and periodical equilibria. The third 
solution is the form of an invariant set [a, b, c, d l ,  as . 
happens in case (3), with 

It is clear that when al > a. and yl > yo, both 
terms in (3.6) above are less than 1, and when al < a. 
and y1 < 70, both terms are greater than 1. Therefore the 
periodical equilibrium with one age-class present is an 
attractor in the former case but not in the latter when al 
<% and71 <TO. 

For the latter case, we must go back to consider the 
situation where both age-classes are present. A periodical 
equilibrium in this case is an equilibrium which oscillates 
between [ ] and [ $ ] where a, b, c, and dare positive 
and finite. Then these constants must satisfy the set of 
equations 

and 

We can demonstrate through numerical simulations 
that, starting with any nonzero initial population, the 
system will tend to be periodical when the values of the 
parameters render the magnitude of p@) less then 1, 
and becomes stationary otherwise. 

4. Analysis for k=3 

For the case of k = 3, we once again consider the 
periodical equilibrium with only one age-class present. We 

A A A  then look for nl  , nz, n3 so that the population will 
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A 
oscillate between 

0 n3 
-7 - 

the same method as we did in section 3, h e  solve for 
A A A  n l ,  n2, n3 to obtain 

A BSISz-1 
and n = 

~ o + Y o B + B S I ~ O  
' 

To analyze the stability of this equilibrium we 
construct a vector-valued function X: LR9 -+ LR9 as de- 
scribed in Section 3, where 

X(m) = I PJ(3mtl)l gives the age composition of 'L 

the population at the mthkeneration. 
Consider the vector-valued function F: IR + W9 

such that 'L 

A  A T .  
and we note that 0, 0, 0, nz, O,0, 0, n3) 1s a fixed 
point of [(*). To study the local stability of this fixed 
point, n, we use the linearization technique used in 
~ection%3 and obtain a characteristic equation P(X) for 
V[(c) as follows: 

= 0, 
where 

A  A  A 
Yi=(1+yinl)(l+yinz)(l+ain3)> 1 for i =  1,2.  

(4.4) 

Note that when ori=% and ri=yo, Yi=BSlS2 for i=l, 2. 
Therefore the local stability of the periodical 

equilibrium can be discussed in three separate cases: 
(4.1) (1) Y1 > BSlS2 and Y2 > BSlS2 with at least one equal- 

ity. In this case, the dominant eigenvalue of VX(c) 
is 1. This implies that the periodical equilibrium is 
stable but not an attractor and therefore convergence 
to the periodical equilibrium is not guaranteed. 
Furthermore, there is an invariant set of non-zero 

A A A  
equilibria of the form (N1, N2 ,  . . . . , N ~ ) ~  with 

Hence X = 0,- BS1 S2 - BS1S2 - all of which are 
Y1' ' Yz ' BS1Sz7 

nonnegative. 

Since - < 1, the magnitude of the dominant 
BSl Sz 

eigenvalue of VFdepends on the relative values of Y1 and 
Yz as compared?o BSISz. 

Equation (4.4) yields 

A A A  BSlS2-1 
and N3+N6+N9 = 

&yB+?.BSl 
' 

w h e n a = a i a n d ~ = y i f o r i = 0 , 1 , 2 ( a n d t h u s Y i =  
BSISz for i = 1,2). 

In this case, the system converges to any point in 
the set, depending on the value of its initial populations 
age composition, and the population becomes stable, but 
not periodical. 
(2) Yi > BSlS2 for i = 1,2 .  Here both BSlS2/Yl and 

BSISz/Yz are less than unity and we have 1 > X > 
0. In this case, the periodical equilibrium is an at- 
tractor and the system will converge to this equilibr- 
ium if the initial population is close to it. We will 
show by means of numerical simulation that the 
periodical equilibrium is also a global attractor in 
this instance. 

(3) Yi < BSISz for i = 1 or 2. In this case, the dominant 
eigenvalue of V{(c) is greater than 1 and the per- 
iodical equilibrium is unstable. As a result, the 
system will converge to the stationary equilibrium 

[$' with 
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A BSlS2-1 
and N3 = 

w-B+Bsl 7' 
where E = a. +al +a2 and 7 = yo+yl +y2 . 

For population with more than three age-classes, the 
dependence of its asymptotic behavior on the relative size 
of the parameters is similar to that of population with 
three age-classes discussed above except in one instance 
which was mentioned in Bulmer [2] and will be discussed 
later. 

5. Numerical Examples and Discussions 

To illustrate the analysis made in previous sections, 
we use the computer to simulate different case fork = 3. 
Each simulation was made for 100 generations (or 100 k 
time units) starting from a random initial age composition 
c ( 0 )  = (N1 (0), . . . , ~ ~ ~ ( 0 ) ) ~ .  Graphs were made from 
the simulations plotting population density of each age- 
class, Nj(t), versus generation time. In each simulation, 
S1 =S2 =0.8andB=5.  

In Figures (1.a) and (1 .b), all competition coef- 
ficients equal 0.1 and, as discussed in case (1) of Section 
IV, all initial positive age comositions e (0)  will approach 
the invariant set characterized in (4.7). However the 
two figures point out that the popu\ation's initial age 
composition will determine which point in the set does 
the population converge to. Therefore, when individuals 
in the population are equally competitive within or be- 
tween age-classes, the population will become stable but 

not periodical, and its eventual age composition depends 
on its initial age composition. This, as nature tells us, is 
not what really happens. It is therefore reasonable to 
conclude that all individuals are not equally competitive. 

For Figure (2), we use a. = 70  = 0.01 and al = a2 
= y1 = y2 = 0.05. This is the case where competition is 
more intense between than within age-classes, so the 
population converges to the periodical equilibrium with 
one age-class present. 

For Figure (3), a. = yo = 0.5, a, = yl = 0.1, and 
a, = y2 = 0.01. From equation (4.9, we have Y1 = Yz < 
BSlS2. Since the competition within an age-class (given 
by the competition coefficients a. and yo) is greater 
than that of other age-classes (described by the coef- 
ficients % and yi, i = 1 and 2), the presence of individuals 
of the same age-class greatly effects the chance of survival 
of the individuals. Here, as we see, the poulation con- 
verges to the stationary equilibrium since the intense 
competition within the age-classes lessens the possibility 
for any one age-class to dominate. 

The above examples show that the convergence of 
the system depends on the relative size of Y1 and Y2 as 
compared to BSl S2. Moreover, when (9-ao) (yi-yo) > 
0, there is no ambiguity to the sign of Yi-BS1B2. (That 
is, it is positive when both %-ao and yi-yo are positive 
and nonpositive when both terms are nonpositive). 

When (ai-ao) (yi-yo) < 0 for either i = 1 or 2, 
whether Y1 and Y2 are greater than BSISl or not is 
determined by the relative size of (%-ao) and (yi-yo). 
So the resulting system could either approach a periodical 
equilibrium if Yi > BSlS2, or the stationary equilibrium 
if Yi < BSlS2. For example, when ai > ao, Yi will be 
greater than BSlS2 even if yi < yo, provided 1%-a. 1 >> 

Generations Generations 
Fig. la Simulation for ori = yi = 0.1 for i = 0, 1, 2; - - - age Fig. lb. Simulation for ori = yi = 0.1 for i = 0, 1, 2; - - - age 

class 1, - - - ageclass 2, - ageclass 3. Initial population class 1, - - - ageclass 2, - age-class 3. Initial population 
= (5,1, 1). = (l,l, 1). 
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0 2 4 6 8 10 99 100 
Generations 

Fig. 2. Simulation for a0 = yo = 0.01; 9 = yi = 0.05, for i = 1, 
2; --- ageclass I,--- ageclass 2, - ageclass 3. Initial 
population = (1, 1,l). 

I ri- 70 1. 
This seems to imply that when the competition be- 

tween age-classes are of intermediate intensity (i.e., the 
competition from other age-classes are stronger than 
within the age-class at some stage of the individual's 
lifetime but weaker at other times), the population will 
tend to periodicity only if the competition from a particu- 
lar age-class (other than its own) at a certain stage of its 
lifetime is much stronger than at other times. Such is 
the case in the example above, where the delayed com- 
petition from the age-class i time units older, 9, is much 
greater than the competition within the age-class at its 

Generations 
Fig. 3. Simulation for erg = yo = 0-5, a1 = 71 = 0.1, "2 = y2 = 

0.01; ---ageclass 1, --- ageclass 2, - age-class 3. 
Initial population = (1,1, 1). 

Generations 8 --',, , 
Fig. 4. Simulation for 9 = ri = 0.01 for i = 0, 1; g, =.uB.rO05; 

ag = 7 3  = 0.1; --- ageclass 1,---ageelass 2, - age 
class 3, - - age-class 4. Initial population = (1, 1, 1, 1). 

birth, %, as compared to the corresponding competition 
coefficients at later stages of its lifetime, 7i and 70. When 
+ao is sufficiently large (so that Yi > BS1S2 regardless 
of the value of ~ ~ - 7 0 ) ,  the system will converp to i ts  
periodical equilibrium. It is, therefore, 5;eq~onable to 
deduce that this intense competition wU,.pqhance the 
population's t$ndency toward a . dp.g@ati@g age-class. 
Thus we can conculde that the emersnw. of one intensely 
competitive age-class does not-tte,egparily guarantee the 
periodicity of a population, but wuld be a major factor 
which reenforces the :a~ppla_ti~ds tendency toward 
periodical behaviour . 

Finally, we consider'@e _case of k > 3. As men- 
tioned earlier, the genegal properties are similar to the 
case of three age-classes..- However, when the periodical 
equilibrium is not a stable equilibrium, the asymptotic 
behaviour of the system is quite different. 

Observe Figure (4) where B = 5, Si = 0.8 for i = 
1, 2, 3, at = yi = 0.01 for i = 0,l and a, = 7, = 0.05, 
ag = yg = 0.1. Using an initial value of Ni(0) = 1 for i = 
1, 2, 3, 4, simulation was done for 100 generations and 
the number of individuals of age 0 in each age-class 
during each generation was plotted. 

Note that there is a dominant age-class at each 
generation, but a different age-class dominates at different 
times. The dominant age-class is alternated among the 
four age-classes and the period of domination lengthens as 
time increases. From the 7th generation to the 50th 
generation, age-class 2 is the dominant age class with its 
maximum occuring at the 17th generation with value of 
26.35757. But from the 51st generation to the 100th 
generation, age-class 1 is dominant with value of 52.84553 




