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ABSTRACT 

The evolution of indiscriminate altruism in animal populations is examined using coupled Von 
Foerster equations. Analytic expression for the gene frequency of altruists is derived. We also obtain 
formulas for the numbers of the altruistic and nonaltruistic groups at each generation in terms of the age- 
dependent ratio of altruists in the population during each geneiation, fn(a). We then use our results to 
demonstrate the distinction between the evolution of altruism and the survival of an altruistic society, and 
our discussion is then illustrated with simulated examples. 
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I. Introduction selfish :members of the population of age a at time t, 
respectively, is the fecundity function and 

The evolution of an altruistic trait in a biological 
population (e.g. alarm calls, fending off of all intruders) 
despite its obvious disadvantage to the altruistic individual 
is a subject of interest in population genetics. The earlier 
work included Hamilton (1964), Maynard Smith (1965), 
Trivers (1971), etc. More recently, the subject has been 
discussed by Cavalli-Sforza and Feldman (1 978, 198 l), 
Maynard Smith (1980) and Akin (1984). There are 
generally two theories: one is reciprocal altruism (Trivers, 
1971) where the altruistic act is performed in favor of 
other altruists; the other is kin selection (Hamilton, 
1964) where the relatives of an altruist are favored. 

In Hsieh (1988), a model of coupled Von Foerster 
equations was proposed to examine the evolution of an I altruistic community with age-dependent altruism. As- 
suming the population is semelparous with the length 
af  a lifetime fixed at ef > 0, the model is as follows: 

with 

a(0,t) + P(0,A = &a(apt) + @(apt) 1. (1.3) 

Here a(a,t), P(a,t) are the numbers of altruistic and 

are the loss functions. Moreover, ny and { are age- 
dependent mortality an& migration rates, and n2 denotes 
the crowding factor, while ya and are the net benefit 
each group receives due to altruism. 

Note that no a priori assumption is made on the 
altruistic functions +ya and yo, although a condition of 
y d a )  > y&a) would imply reciprocal altruism in the 
population. The only condition imposed so far is that 
if and 7rf are continuous and nonnegative in [O,af]. 

Making use of results in Coffman and Coleman 
(1979), we can obtain sufficient conditions on the altrui- 
stic functions and fecundity function to ensure the 
evolution of altruism (see Hsieh, 1988). However, 
analytic expressions for the altruistic ratio in the popula- 
tion or the size of the altruistic group can not be ob- 
tained. 
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In this paper, we shall attempt to find analytic 
formulas for the population at each generation by making 
the additional assumption of indiscriminate altruism (i.e. 

= yo). This assumption is valid for altruistic acts shared 
equally by all members of the population (although this 
is obviously not an appropriate assumption when one 
describes the intricate systems of designated work in com- 
munities of social insect). 

Sections 2 and 3 are devoted to finding an analytic 
solution of the system described in (1 .I)-(1.5), assuming 
indiscriminate altruism. The biological significance of the 
results will be given in Section 4 along with simulated 
examples to illustrate the conclusions. 

where 

i? (a) = nf (a) - ny(a). 

Dividing (2.4) byzl(a) and let flu) = x(a)/z(a) be the 
proportion of altruists in the population, we get a separ- 
able equation: 

The solution to (2.6) is simply 

II. Evolution of Altruism under 
Indiscriminate Altruism 

withflo) the initial ratio of altrlleSts in the community. 

Since 1 - f(a) = y(a)/z(a), '(2.7) can be written as In this section we shall make the additional assump- 
tion that the benefit of altruistic behavior is shared and 
shared alike by all individuals of the population, hence 
yda)  = =&a) = y(a). In this case, condition (4.2) in Hsieh 
(1988) is always satisfied, and thus, altruism will evolve 
under appropriate conditions on the fecundity function 
F. Going back to the notation in Section 1, we have 

Following the procedure used in Hsieh (1988), 
we let af = 1 and x,(a) = Na,n + a), y,(a) = P(a,n + a). 
Suppressing the subscripts in x, and y, to simplify the 
typography in this section, we can rewrite (1.1), (1.2) 
as the ratio between the altruists and nonaltruists of age a 

at the n-th generation. 
Let p,= a(l~z+l)/fl(l ,n+l) be the ratio of adult 

altruists and nonaltruists of n-th generation prior to re- 
production, we have the following formula: 

where 

Adding the above equations, we get 

is the "fecundity function" for the ratio of successive 
generations of altruists and nonaltruists. Moreover, since +n2 (a)z2 (a) - r (a>x(a) = 0 

where z(a) = x(a) t y(a) is the total population size. 
Multiplying (2.1) and (2.3) by z(a) and x(a), respectively, 
and subtracting, we get 

where qi(a) is the gene frequency of an altruistic trait 
when the population is of age a at the n-th generation, and x'z - z'x - tl(a)(z -x )x  = 0 
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Inserting (3.1) into (2.1) yields the following ODE 
for x(a) : 

X; (4 + @ y n  ( a h  (a) + @Tn @)xi (a) = 0, (3.2) 

(2.13) where 

&,n(a) = *a) - r(a>fn(a) we have 

and 

The ODE is valid provided x j  > 0, i.e. there are 
some altruists among the newborns of the generation in 
question. The solution to the Bernoulli equation in (3.2) 
is 

in which F is the fecundity function for $ defined in 
Section 3 of Hsieh (1988). If the conditionnil(a) > 0 is 
imposed as in Hsieh (1988), and 

F '(0) [I - F(O)] - F (0) [-F '(o)] 
G '(0) = = F '(0) , OGaGl .  

[1 -F(0)I2 
(2'1 6,  And from (3.1) and (3.9, we can solve y(a): 

since F(0) = 0, i.e. a population of selfish adults cannot 
bear altruistic offsprings. The same condition can also be Y: exp[- la @&(r)dr] 

imposed on G. Thus, for 19 1 small, G(9) E G1(0)9 = F1(0)9 o rn (a) = 
and 

9 

0 a 0 
1 1 + Yn @l ,n(~)   ex^ [- Ss @fPn(7)  TI ds 

P n ~ F 1 ( 0 ) e x ~ [  + ~ ( T ) ~ T I P , - ~ .  
$ 0  

(2.17) o 

0 9 a G  1 ,  (3 -6) 
Relation (2.15) implies that F1(0) exp [J: i?r,(r)dr] > I 
and thus, pn > pn_l  whenever p,-I is sufficiently small. where 
This guarantees that the sequence {P,);=, will not 
decrease to 0, and hence, the evolution of an altruist in a 4 (a) = nf(a) - )-r(a)fn (a), 
population is assured. 

= ., (41 11 - fn(a)l a (3.7) 

II I. Analytic Expression for Actual 
Size of Altruists 

Defining the functions A:, A:, A:, and as 

From Equation (2.7), we can obtain an expression 
for the ratio of altruists in the population, given x i  = 

xn(0) = or(Ofi),y; =rn(0) = P(0,n): 
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environmental factors as in Coleman and Hsieh (1979. 
To discuss the asymptotic tendency of the popula- 

tion in question, we let rn 2 0 be fixed and xm > 0 be 
given. Using the results given in Coleman and Hsieh 
(1979), we have the following theorem for the survival 

we have 

le altr 

Going back to the notation in Section 1, where 
a(a,n + a) and P(a,n + a) are the altruists and nonaltruists 
of age a at the n-th generation, (3.9) can be written as 

Theorem 1 : (i) If Antm -+ 0 or .C;,, +- as n +-, then 

lim xn = 0. 
n* . 'i - 

. .  ; 4 

(ii) Suppose. q a t l 0  - < inf, ,, Cn , < 
SUP, ,, '<-T,\ and An; 
oq then the altruistic members 

&w"2 in  i 
the popula. 

tion will survive in the sense that 

1 
lim [ f l , * (x , )  - 7 ] = O .  (3.19) 

Assuming that the fecundity function is linear for 
the altruists, i.e. 

Moreover, if limn, C,, , exists, then xn + .. - .- ,... 
limn _, 1/C as n + regard 
of the altruists at the m-th g 

less 
ene 

of the iize 
ration, x,. 

the number of adult altruists in the n-th generation just 
before the (synchronized) reproduction is Making use of equations (3.3), (3.4), and (3.8), 

we have the following corollary to Theorem 1. 

Corollarv: If the functions i3, .  n, and r are chosen so 
a ,  - 

that (I& $yn < 0 in mean, Vn 
s p  h ,  > 0, then as n where, using condition imposed on n2, 

if the limit exists. 
lim C,,, 

n* 

defme "@Yn < 0 in mean" 
arty J: 0.) 
darly, if the fecundity function 

to 

for 

satisfy the 

the nonal- 
truists is also linear, i.e. 0(O, n) = F2@(1 ,n)) = qO(l,n), 
q > 0, the corresponding generation growth function for 
the nonaltruists is I with 

with and 

, = , > 0 , = , n ( l ) q o .  (3.21) 

Subsequently, for 0 < m < n, 

The scenario is thus strikingly similar to that of a 
single semelparous population in Coleman and Hsieh 
(1979), with the exception that the time-dependent 
functions P and A:,, vary with the fluctuation of the 

J ,n altruistic ratlo fn(a) in each generation, instead of the where 
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and 
n-m-r $,n-j 

Dn.m ' j=o A!,. . . ."a . > 0. ~ n - I  

Hence, we have a similar theorem for the survival 
of the nonaltruists: 

'Theorem 2: If the functions 7 i l ,  n2 and y are chosen so 
that ( I )  & ,  < 0 in mean, an  > y., (2) - > sup h e n  > 0, then yn -' 

1 

n lim Dn,m 
n- 

if the limit exists. 

If the conditions of both the Corollary and 
Theorem 2 are satisfied, both the altruists and nonaltruists 
will coexist in the community. But if, on the other hand, 
the condition in (i) of Theorem 1 is met, the altruists 
will become extinct. In fact, we have the following 
theorem for mutual extinction: 

Theorem 3: Suppose (i) @pin > 0 in mean, 'dn > m or 
sup, A!& = = and (ii) ern > 0 in mean, 
On > m or supn h t n  = -, then the whole 
population will become extinct. 

It is important to note that,although the asymptotic 
behaviour of the altruists and the nonaltruists depends 
on different sets of parameters, the parameters myn, 
4 , , ,  $:, ,&,, are related by the simple fact that they 
are given'in terms of the altruistic ratio of age a at the n-th 
generation, fn(a), as defined in (3.3), (3.4) and (3.7). 
Thus, the fates of the altruists and the nonaltruists are 
strongly bonded. To illustrate the point, let us consider 
the example where il (a) < 0, 0 4 a < 1,  with > 
ha in mean, Vn > m, and fn(l) +=O as n +=-. In this 

1 ,n 
case, xn -' 0 as n + no matter how we choose the 
functions G I ,  n2, and y, since 

sup = m. 
n 

Hence, the survival of an altruistic communit still B depends on the "relative" size of the functions al  and 
f as shown in Hsieh (1988). 

IV. Conclusions and Examples 

In many biological populations, a phenomenon 
could occur where a group of altruists suddenly migrates 
into a community of strictly selfish individuals, or vice 
versa. h s u c h  an instance, the survival of the altruist 

becomes questionable. In our model, this possibility is 
taken into account in the functions n y  and 4, since they 
account for the effects of mortality and migration on a 
population. Equations (3.15)-(3.17) and Theorem 1 in 
the previous section imply that if a community with no 
altruist is suddenly invaded by a group of altruists at time 
t = m (hence xm = 4l ,m) > O), the number of altruists 
in the community will converge to l/li%, en,, 
provided the conditions in Corollary are met, i.e. the 
altruists will survive no matter how small the initial group 
of altruists is. Ditto for the case of nonaltruists invading 
an altruistic society, as long as conditions in Theorem 2 
are met. 

Nevertheless, survival of altruists in a community 
is not altogether the same as the evolution of altruism. 

1 In qsieh (19881, we have shown that $0 ?fl(a) da > - 
In F (0) implies the evolution of altruism in the sense that 
the gene frequency q i  becomes fixed as n +w. However, 
this condition does not guarantee the survival of altruists. 
For, in the case of Theorem 3, both xn and yn go to zero 
as n + -, and yet, it is possible for the ratio of altruists 
to remain nonzero for all time if the numbers of both 
altruists and nonaltruists are decreasing at the same rate. 
The above possibility is illustrated with simulated ex- 
amples. 

For the simulated populations, we let n2(a) = ~ ( a )  = 
a, v = 17 = 1, and use the initial condition of o(0,O) = 1, 
0 0,O) = 1.5. For the first simulation run, we let *?a) = 
A(a) = -a so that the evolution of altruism is assured as 
well as the survival of altruists. The graph of adult 
population size vs generation is given in Fig. 1 where, 
after 15 generations, the number of adult altruists conver- 
ges to 0.410 while the nonaltruistic adults total 0.629. 
In other words, if we start with 1000 altruists and 1500 
nonaltruists, the respective numbers will become fixed at 
410 and 629 after approximately 15 generations. More- 
over, the gene frequency will also become stable at 0.628 
(see Fig. 2). But if we let 7r3a) = f(a) = a, the gene 
frequency is still fixed at 0.626 (Fig. 4), but both the 
altruists and nonaltruists will become extinct (see Fig. 3). 

Since n y  and nf denote the effects of mortality and 
migration on the altruists and nonaltruists respectively, 
the case of Figs. 1 and 2, where n y  and 4 are negative, 
could be interpreted as having a large flow of immigrants 
which helps maintain the stability of the population. 
However, if the net migration is only minor compared to 
mortality as in the case of Figs. 3 and 4 ,  the population 
will become extinct even if the ratio of altruists in the 
population is fixed throughout the demise of the comm- 
unity. 
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Fig. 1. Population sizes of adult altruists and nonaltruists at the 
n-th generation for n = 1, . . . , 15 with n2(a) = ')fa) = 
a , v = ~ = l  q a ) = d $ a ) = - a .  

GENERATIONS 

Fig. 2. Gene frequency qn(l)  of adult altruists of the n-th genera- 
t i o n f % n = l  ,..., 1 5 w i t h 1 r ~ ( a ) = ~ ( a ) = a , v = q = l ,  % 1 
b)= ,(a)=*. 
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