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Let x and y be age distribution vectors and let H = A,,, A,-, . . - Ak+l be the product of population 
projection matrices A, of a population from time t = k to m. The optimal estimate vector x* is defied 
as the unique positive vector at which 

HY min max l - - x l  
Ixl1=l lvl1=l lHyl1 2 

is attained. It is useful as an estimate of the current age distribution of a human population under varying 
vital rates. In this paper, we show how x* can be computed as the Chebyshev center of a convex set, 
provided the sequence of Leslie matrices satisfies the conditions of the "backward" weak 
ergodic theorem. 

Some mathematical aspects of the method, as well as its applicability, will be discussed and numerical 
simulation will be run to illustrate the results and to compare the method with the traditional estimate of 
stable population theory, using the right eigenvector associated with the dominate eigenvalue of matrix 
product H .  

KEY WORDS: Leslie matrix, optimal estimate, Chebyshev center, backward weak ergodicity, varying 
vital rates, age structure. 

.Communicated by Marc Artaouni 

1. INTRODUCTION 

Much work has been done in applying the theory of stable age distribution to make 
demographic analysis and prediction of human population with stable vital rates. 
(See, e.g., Coale and Demeny, 1967). However, in cases where the vital statistics 
of a population vary drastically during any given time period, the estimate of 
subsequent age distribution by stable population theory falls short of one's satis- 
faction. 

Coale (1957) conjectures that, even under varying vital statistics, the age distri- 
bution of a population should become independent of its initial age structure even- 
tually. His conjecture was later proven by Lopez (1961) in the form of the weak 
ergodic theorem. In its discrete version, the weak ergodic theorem implies the con- 
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vergence of a sequence of products of Leslie matrices (or population projection ma- 
trices) to a sequence of positive matrices with rank 1. The weak ergodic theorem 
assures us that regardless of the age structure of a population years ago, the vital 
rates since then completely determine the current age structure. Therefore, to esti- 
mate the current age distructure, we need only the vital statistics for the recent past 
years. Kim and Sykes (1976) showed numerically that 15 to 20 10 x 10 matrices for 
females in 5-year age groups (given 75-100 years of vital data) would be sufficient 
to given good estimate of the current age distribution. 

However, the weak ergodic theorem does not in itself provide any specific expres- 
sion for the row and column of the limiting matrices of rank 1, nor does its various 
related limiting theorems proven by Golubitsky et al. (1975), Hajnal (1976), Chat- 
terjee and Seneta (1977), among others. Preston and Code (1982) generalized the 
results of stable population theory to provide various expressions where one can 
estimate the age distribution of a population when the vital data are defective or 
incomplete. More recently, Kim (1987) presented a method in which explicit expres- 
sion of limiting row and column vectors for the forward and backward weak ergodic 
theorems were given as functions of the vital rates. In application, when complete 
census of the past or complete vital statistics of a population is not available, the 
estimate of current age structure is a practical problem, especially when the popu- 
lation is not stable in the sense that the stable population estimate using the right 
eigenvector of dominant eigenvalue would yield a significant error. Since population 
data with no complete census or with insufficient vital statistics frequently occurs 
in developing countries which are also most susceptible to drastic charges (due to 
either natural disaster, man-made catastrophe, or drastic social changes), the prob- 
lem of finding a more accurate estimate is a relevant question in application of 
mathematical demography. 

Hsieh (1982) proposed the method of optimal estimate by defining an optimal 
vector which serves as an estimate for the age distribution of a population at time 
t = m,x,, in the sense that it minimizes the maximum possible (Euclidean) error 
of the estimate that can occur even if the initial age distribution, xk with k < m, 
is such that x,,, is as far away as possible from any estimate for it. The estimate 
is "optimal" in the sense that when the vital rates of a population is undergoing 
rapid changes, a worst-case scenario assumption will be more valid than the stable 
population estimate traditionally employed. 

In this work, we will discuss the applicability of the method of optimal estimate 
by showing that, under the condition that the sequence of Leslie matrices from time 
t = k to m obeys the hypothesis of the backward weak ergodic theorem, the optimal 
estimate vector can be obtained by computing the Chebyshev center of a convex set 
closely related to the product of the sequence of Leslie matrices from x = k to m. 
We will first state the backward ergodic theorem in Section 2. Section 3 will be 
devoted to main mathematical results and Section 4 gives a numerical procedure by 
which the Chebyshev center of a given convex set can be easily computed. Finally, 
in Section 5 we will give numerical simulations of a population undergoing changes 
in vital rates to illustrate our results and the applicability of the method. We will use 
a sequence of varying vital statistics given in Kim (1985) for a population with two 
age-groups. We will estimate the current age distribution using the optimal estimate 
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to show that in some instances, the optimal estimate is more accurate than the stable 
population estimate. 

2. BACKWARD WEAK ERGODIC THEOREM 

THEOREM 1 (Backward Weak Ergodicity) Let {A,), s = 0, -1, -2,. . ., be an injinite 
sequence of n x n nun-negative matrices obeying the following assumptions: 

1. For each non-positive integer m, there is an integer mo < m such that HmJ > 0 for 
all r 5 mo, where HmJ = Am AmW1 Ar 

2. There are positive numbers a and /3 (independent of s) such that 
a) min:aij(s) >a! > 0 

.. b) maxi,jatl(s) 5 p < 
for all non-positive integer s, where min; aij(s) denotes the smallest of the (strict@) 
positive components of A,. 

Then, for any non-positive integer m and two distinct, non-negative, non-zero vectors 
p and v, the vector sequences {p;,) and {vg)) defined by 

,q) = ~ m s m - k  p and 

are "asymptotically proportionalJJ in the sense that 
m 

';li '(')j = 0 for au i, j = I,. . ., n. lim - - - [qr q)j] 
Here pZli is the ith component of the vector pz). 

The theorem is similar to the standard (forward) weak ergodic theorem for fi- 
nite inhomogeneous Markov chains (e.g. in Seneta, 1973, 54.3) except that the ma- 
trix product goes backwards. However, the results from inhomogeneous Markov 
chain theory can be used since they are essential direction-free (see Chatterjee and 
Seneta, 1977). Kim (1987) showed that when the time interval for the product ma- 
trix Hmtr, namely rn and r, is fixed, the backward and forward results for the age 
distribution can be consolidated into one equation. Since in any estimate of the age 
distribution of population, only a finite number of Leslie matrices is available, the 
results of the backward weak ergodic theorem justifies the use of recently past vital 
statistics for determination of current age structure. 

3.1. Preliminaries 

Let us review some basic concepts from Hsieh (1982). 
A Chebyshev center of a compact set S c Rn with respect to some metric I I 

(which we take here to be the Euclidean, 11 112) is a point x* E S such that 

max Ix* - yl = min max Ix - y1, 
Y E S  x€S  Y E S  

i.e., it is the center of a ball of minimal radius containing S ("a generalized cir- 
cumsphere"). If S is convex, x* is obviously unique; and we may write "IlfinxERn" 



Y-H. HSIEH 

instead of "minxEs" in (2). If S is a convex polyhedron in Rn (or some subspace), 
S = CH(al, . . .,a,) (where "CH" means "convex hull"), we may find x* as the 
point for which 

m~ Ix* - ail = minmax Ix - ail. 
I x E S  i 

(3) 

The special case of (3) where S is a simplex is considered in more detail in the 
following section. 

Let A = CH(el, ..., e n ) =  { X E  Rn I x L 0 ,  llxlll = I ) ,  where llxlll = 1x11 + . a * +  

Ixn 1. For a given non-negative matrix H, with column vectors hi (= Hei), i = 1,. . . , n, 
define a mapping T of the non-negative orthant R+" into A by 

Denote by B the image of A under the mapping T. Then 

where ai = Tei = hi/llhilll, i = 1,. ..,n. Note that if H is the positive matrix product 
of population projection matrices HmJ in Theorem 1 satisfying the hypotheses of 
the theorem, then H is invertible and B is an (n - 1)-dimensional simplex with 
vertices al, . . . , a,. 

An optimal vector for H is a vector (point) x = x* at which 

min max 1Ty - xl 
X E A ~ E R + ~  

is attained. From the discussion above it is clear that x* is the Chebyshev center 
of B. 

The proofs of the statements in this section are elementary and are left for the 
reader, cf. also Hsieh (1982). 

3.2. Main Results 

Consider the (n - 1)-dimensional simplex B = CH(al, . . .,a,) from Equation (9, 
and recall that B c A. We shall examine the relation between the Chebyshev center 
x* and the circumcenter xC of B, the latter being the point in A with equal distances 
to all the vertices. Let us start out with some definitions. 

mij is the midpoint between ai and aj, 

mij = (ai + ai)/2, 

bij is the hyperplane that bisects ai - a j  perpendicularly 

bii = { X E  Rn I ( a i -a j ) - (~-mi i )=0} ,  

Sij is the halfspace bounded by bii and containing aj, 

Sij = {X E Rn I (ai - ai) - (X - mii) 5 01, 

Ri is the intersection between A and all the Sij7s, j = 1,. . ., n, j # i, 
Ri = ( ~ ~ A I ( a ~ - a ~ ) . ( x - m ~ ~ ) < O f o r  j=l,  ..., n, j f i}. 



POPULATION AGE STRUCTURE 

Note that bij = bji = Sij n Sji. Note also that it follows from the definition of Ri 
that x E Ri implies Ix - ail = maxi Ix - ail. 

Since Ri is convex and closed there is a point xoi E Ri closest to ai, and it occurs 
on the boundary of Ri, i.e., on either [I] one, [2] several or [3] all of the hyperplanes 
bij. In case [3] we have x* = xC. 

Examining case [I], let us define a point of smoothness of a closed convex set 
as a boundary point having a unique supporting hyperplane. If the point Xoi is a 
point of smoothness of 23, then ai - xoi must be perpendicular to the supporting 
hyperplane at x0i, and in fact this hyperplane must be equal to bij for exactly one 
j, because every bij passing through xoi supports B there. In other words, we have 
case [I], and obviously x0i = mij. 

THEOREM 2 Let H be the positive matrix product of population projection matrices 
HmJ satkfiing the hypothesis of Theorem 1, and let B, Ri, mij be as described above. 
For any two integers i, j E {I,. . . , n }  we have 

mij E Ri * L(aiakaj) 2 ~ / 2  for aU k f i, j, 

and in that case it follows that x* = mij. 

PROOF. Note that mij E Ri implies mij E Rj. Besides we have 

mij E Ri H (ai - ak)  - (mij  - mik) 5 0 for all k # i, j 
* ( a i - a k ) . ( a j - a k ) 5 0  forall k f i , j  

~ L ( a i a k a j ) L ? r / 2  forall k f i , j  

lmij - akI 5 lmij -ail = lai - aj1/2 for all k f i, j. 

In other words, for mi j E Ri we have 1 mi j - ai 1 = maxk 1 mi j - ak 1, and it ~ O ~ ~ O W S  

easily that X* = mi j .  

Note that the theorem applies to a slightly more general situation than [I], namely 
when the point in Ri closest to ai is not a point of smoothness, because L(aiakaj) = 
a / 2  for some k .  In this case mij is the intersection of bij and bik, but the theorem 
is still valid. Hence case [2] is similarly treated. 

We shall now state and prove a corollary to Theorem 2 which is indicative of the 
direction we are heading in dealing with this problem of computing the Chebyshev 
center x* of 8. 

COROLLARY 1 Suppose the equivalent relation in (7) is satisfied for apair of integers 
i, j, with i f j. If Laiakaj = 7r/2 for each k # i, j, then mij is the circumcenter and 
the Chebyshev center of 8. 

PROOF. If Laiakaj = ~ / 2  for each k f i ,  j ;  then 

llai - mij112 = llaj - mijllz = llak - mijll2 for each k f i, j. 

(i.e., mij is equidistant to all vertices of 8 and therefore is the circumcenter of 8.) 
Since mij is in B, it is also the Chebyshev center of 8. 
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Since B is an (n - 1)-dimensional simplex, its circumcenter xC satisfies the follow- 
ing equations: 

and I I x ~ I ( ~  = 1. Because {al,. . . ,a,) are linearly independent, the n equations deter- 
mine a solution xe uniquely. 

Now consider the case when the condition in Theorem 2 does not hold; i.e., for 
each pair of integers i, j E {I,. . ., n), there is an integer k # i, j such that Laiakaj < 
a/2. We shall first show that if the circumcenter of L? is in B, then it is also the 
Chebyshev center. 

Let yi denote the point in Ri  closest to ai, i-e., for i = 1,. . ., n, yi E Ri and 

Clearly, the circumcenter xC of B is in Ri for each i and in the case in which xC is 
also in B, xC = yi for each i. (Since xC is the unique point in 23 that is equidistant 
to all vertices of B, it must minimize the distance to ai over a set that is no closer 
to ai than any other vertices of B and has a non-empty intersection with 8, namely, 
the set Ri.) 

THEOREM 3 If xC, the circumcenter of B, lies in B, then it is also the Chebyshev 
center of B. 

PROOF. To show xC is the Chebyshev center of 8 ,  let us suppose that xC is not 
the Chebyshev center, i.e., there exists a point y E B, with y # xC, that minimizes 
maxi I I x  - ai1I2 over B. We then have y E R i  for some i and 

since y must minimize over Ri as well. But we know xC = yi for each i, in view of 
(9) and (lo), xC must equal y and we have a contradiction. 

Now we shall state a theorem for the case when xC is outside B, the proof of 
which also requires Theorem 3. 

THEOREM 4 If xC, the circumcenter of B, lies outside 8 ,  then x*, the Chebyshev 
center of B, is the (unique) point in B closest to xC. 

PROOF. Since B is convex, we know that x#, the point in B closest to xC, is unique. 
Consider the hyperplane, 3-1, that contains x# and is perpendicular to xC - x#. 
Clearly, we have 

x € 7 - l * ( x C - x # ) . x = ( x C - x # ) . x # .  

Since x# is the point in 23 closest to xC, it follows that B is separated from xC by 
7-l; that is, 

(xC-x#) .x<(xC-x#) .x# forall X E B .  

Let us define a finite list of m integers {MI,. . .,Mm) C (1,. .., n), with m < n, 
such that 

(xC - x#) - ai = (xC - x#). x# for i = MI,. . ., Mm, 
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Renumbering this set of m integers by (1,. .., m )  henceforth to avoid double sub- 
scripts, {al,. . - , a,) is the set of vertices of B that are contained in H. 

We know that m > 1 from the fact that 23 is convex. I f  m = 1, then 7-f supports B 
at a1 only and x# = al. But x# is the unique point in B closest to x and 

llxC -alllz = llxC - gill2 for i = 1, ..., n. 

Thus we have a contradiction and m 2 2. 
Therefore, we know that 

7 - f n B  = CH{al  ,..., a,}, 2 5  m < n. 

H can not contain all n vertices since {al,. ..,a,) are linearly independent are 7-f is 
(n - 2)-dimensional. 

Let C denote the ( m  - 1)-simplex 7-fn B, then x# E B and x# E H imply x# E C. 
We have 

I I X  - xC1l; = I I X  - ~ ' 1 1 ;  + ~ l x # -  xC1l; for all x E C. 

Thus, for any two integers i ,  j E (1, .. ., m } ,  

l l ~ ~ - a i l l ~ = I I ~ - a j 1 1 ~ ,  wealsohave ~ l ~ # - ~ i l l ~ = I I ~ # - a j l l ~  

and x# is the circumcenter of C. Therefore the Chebyshev center of C by Theorem 3. 
It remains to be shown that x# is the Chebyshev center of 23. We know that for 

each k 4 { I , .  .., m )  and i E { I , .  ..,m), 

But k 4 (1,  .. . ,m) implies that, for i E { I , . .  . ,m}, 

(xC - x # ) .  (ak - x') < 0 and (xC - x#) - (ai - x#) = 0. 

Formulae (11) and (12) together imply that 

for each k 4 (1, ..., m )  and i E (1,. . ., m ) .  Therefore, we have 

Ilx#-ai112= max Ilx#-ajl12 foreach i ~ { l ,  ..., m ) .  
jc{l, ..., 1 1 )  

For each x E B/C and j E {I,. . . , m}, there exists yx E 7-f such that 

IIx = IIx - Y ~ I I ~  + llyx - ajllK > llyx - ajlli 

Since we have 
# I ( x  -aj1)2=min max Ilx-ajl12 for i = l ,  ..., m, 

x € B  j€{l,  ..., n )  

for each y, E H, there is an integer i E (1,.  . ., m) such that 

Ilx# - ai 112 < l l ~ x  - ai 112- 

(14) and (15) together imply that for each x E B/C, 
# I I x  -ail12 < IIYx -ail12 < Ilx-aiII2 



Y-H. HSIEH 

for some i E (1,. . .,m). Since x# is the Chebyshev center of C we have, in fact, for 
all x E B, 

I[X# - ail12 I I ~ x  - ail12 for some i E {I, ..., m), (16) 

and this together with (14) give us 

Ilxx - ail12 = max I [ x #  - ajll2 5 . max I [ x  - aj[12 for all x E B 
jc{l, ..., n} ~€{lv. .*n} 

# I I x  - = min max Ilx - ailla. 
x € B  j€{l,.,.,n) 

4. DESCRIPTION OF NUMERICAL METHOD 

The results of Theorems 3 and 4 yield the following procedure for computing the 
optimal vector x* for a given n x n invertible, non-negative matrix H: 

1. Compute the set {al,. ..,a,) where 

Hei a .  = - for i = 1, ..., n 
' IlHeill~ 

and ei is the basis vector with components bij. 
2. Compute the circumcenter, xC, of 

B = CH{al, ..., a,) 

using the n - 1 equations in (8) and l[xClll = 1. 
3. If xC E B, then xC is the Chebyshev center of B and thus the optimal vector 

for H. 
4. If xC 4 B, then from the proof of Theorem 4 it follows that the optimal vector is 

the circumcenter of a simplex whose vertices a subset of {al,. . .,a,). 

The computation of step 4 can be cumbersome when n is large, but in applica- 
tions of Leslie matrices, when the number of age-groups is usually ten or less, the 
method is direct and fast. In the next section, we will give numerical examples of 
population estimate using the optimal estimate and compare it with the traditional 
method of stable population estimate using the eigenvector corresponding to the 
dominant eigenvalue of the matrix product, H. 

5. NUMERICAL EXAMPLES 

In this section, we use the vital data of 15 countries used in Kim (1985). Table 1, 
reproduced from the Appendix Table in Kim (1985), consists of the vital rates of the 
first 15 countries in Keyfitz and Flieger (1968) in which the countries are ordered 
alphabetically by continents. We choose this set of data for reason of simplicity since 
the populations are divided into two age-groups only, the first consists of individuals 
of age 0-24, the second of age 25-49. Assuming a population following the given 
sequence of vital rates in the list, we have 15 2 x 2 population projection matrices. 
ai,bi denote the fertility rates of the 1st and 2nd age-group, respectively, in the ith 
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TABLE 1 
List of Countries and Elements of the Population Projection Matrix 

(Reproduced from Appendix Thble, Kim, 1985) 

i Country ai bi Ci 

1 Algeria, 1965 1.332 1.138 0.924 
2 Cameroon (West), 1964 0.819 0.628 0.757 
3 Madagascar, 1966 0.860 0.864 0.701 
4 Mauritiusa, 1%6 1.099 0.887 0.932 
5 Reunion, 1963 1.375 1.227 0.927 
6 Seychelles, 1960 1.359 0.985 0.955 
7 South Africa, 1961 0.226 0.983 0.912 

(colored) 
8 South Africa, 1961 (white) 0.756 0.518 0.972 
9 Tunisia, 1960 1.174 1.027 0.919 

10 Canadab, 1966-2%8 0.578 0.383 0.%1 
11 Costa Rica, 1966 1.371 1.119 0.961 
12 Dominican Republic, 1966 1.103 0.907 0.950 
13 El Salvador, 1961 1.336 1.061 0.919 
14 Greenland, 1%0 1.450 1.190 0.942 
15 Grenada, 1961 1.323 1.035 0.947 

aExcluding dependencies 
*Excluding Newfoundland 

TABLE 2 
Estimates for Population Obeying the Vital Rates of Thble 1 

xo (initial age distribution) 0.600000 0.400000 

xis ("current" age distribution) 

x* (optimal estimate) 

x, (stable estimate) 0.656559 0.343441 

1x1s - ~ * 1 2  0.000260 

time period, and pi is the survival rate of the first age-group of ith time period to 
the second age-group in the next time period. Since n = 2, step 4 in the numerical 
procedure described in the previous section can be easily computed. 

Table 2 gives the first example. The initial age distribution vector is xo = (0.6,0.4). 
Assuming the population follows the vital rates in Table 1, XIS = (0.6571,0.3429) is 
the "current" age distribution. We also compute the optimal estimate x* using the 
vital rates of the last five time period (i = 11 to 15), i.e., H = A15 - - - All. Thus 
we have a population with (deterministically) varying vital statistics for 15 time 
periods (or 375 years), then we use the vital rates of the last 125 years to obtain an 
estimate for the current age distribution (xis). We also compute the stable estimate 
for H which is the (normalized) right eigenvector corresponding to the dominant 
eigenvalue of H. The Euclidean error of both estimate are also computed. As one 
can see, the error of the optimal estimate is much smaller than that of the stable 
estimate. 
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TABLE 3 
Estimates for 10 Stimulated Populations Using Permutations of the List of Vital Data in Bble 1 

Population 1x1s - X* 12 1x1s - 4 2  

Moreover, we would like to know if such accuracy is merely a coincidence of 
numbers. To investigate further, we use permutations of the list in Table 1. For each 
of the ten simulated populations in Table 3, we reorder the list in Table 1 so that one 
of the first 10 sets of vital data comes at the end of the list, i.e., the i-th simulated 
population follows the permutation order of (I,&. . .,i - l,i + 1,. . ., 10,11,. . ., 15,i). 
For example, the 2nd simulated population follows the order (1,3,4,. . . ,14,15,2). 
The purpose of this simulation is to see that when a "random" vital data is added 
to the end of the five time period, will the optimal estimate still be more accurate? 
In Table 3, H = AiAIS .. .All  for the ith population, hence we use 150 years of vital 
statistics to estimate the current age-distribution. Once again, xo = (0.6,0.4) and we 
compute the Euclidean error of the two estimate compared to XIS. 

To save space, we only give the errors of the two estimates in Table 3. In each 
case, the estimate with the smaller error is distinguished by an asterisk symbol (*). 
One can see that the optimal estimate is better in eight out of the ten cases. Fur- 
thermore, in seven of the ten cases, the Euclidean error of the optimal estimate 
is less than In all cases, the stable estimate is expected to provide a good 
estimate since it was conjectured by Kim and Sykes (1976) that 2n or 3n Leslie 
matrices, where n is the dimension of the matrix, are needed for the population to 
converge. But that the optimal estimate gives an even better estimate in most of the 
cases is in itself significant. Hence, when faced with varying vital statistics and few 
vital data to work with, the optimal estimate is a viable option to the traditional 
stable population theory. 
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sont obtenus sur la distribution de la fkonditt dans la population stable correspondant B ce modble. En 
particulier, la population totale contient des sou-populations qui se caracterisent par differenis niveaux 
de fkonditd. 

Tables de survie multi4tats et modeles lineaires (Richard D. Gill). 
buteur  hi t  le point sur quelques mCthodes statistiques utilisables en analyse b6nementielle ("event 
history analysis") et dans 1'Ctude des tables de survie multidtats. Pour I'ktude de certain5 modMes semi- 
markoviens et dam les modtles de debilitation B hc5ttrog6n6it6 non-observable, R. Gill s'attache par- 
ticulihrement aux relations entre vraisemblance partielle d'une part, et des mkthodes du rniudmum de 
vraisemblance d'autre part. 

Une variante de la formule de Heligman-Pollard B neuf param8tres (Anastasia 
Kostaki). 
Cauteur propose une variante B neuf paramttres de la fonction de Heligman-Pollard utilisk pour 
mod6liser les taux de mortalit6 par $ge. Des ajustements empiriques sur cinq pays europkns montrent 
que cette nowelle fonction ajuste mieux les taux de mortalit6 que la formula classique B huit paramkres. 

Estimation optimale de la structure pas Age dans une population soumise h des 
taux de f6condit6 et de mortalit6 variables (Ying-Hen Hsieh). 
Si H = A,A,-l.. . Ak+l est un produit de matrices de Leslie, I'auteur definit le vecteur x* comme &ant 
l'uniquevecteur x* pour lequel le minmax minmaxIHy/lHyll - xlz est atteint (le min est pour lxll = 1, 
le max est pour ly J1 = 1). Le vecteur x* est un estimateur de la structure par ige, et peut &re consider6 
comme le centre au sens de Chebyshev d'un certain ensemble convexe. Les aspects mathdmatiques de la 
question sont dudit% et des exemples numtriqup sont donnk. 



ABSTRACTS OF RELATED ARTICLES 

Short abstracts of recent articles in mathematical demography that have appeared 
elsewhere in the literature are given below. This review covers systematically the 
following journals: Theoretical Population Biology, Mathematical Biosciences, Journal 
of Mathematical Biology, Journal of Theoretical Biology, Bulletin of Mathematical Bi- 
ology, Demography, Population Studies, Population, European Journal of Population, 
Genus, and Journal of the American Statistical Association. Other journals, particu- 
larly mathematical journals, are surveyed, but in a less systematic fashion. 

Bonneuil, N. (1990) Contextual and structural factors in fertility behaviours. Popu- 
lation [English Edition], 2: 69-89. 
The author studies the topological structure of historical time series of net reproduction rates by using 
the theory of chaotic dynamics. 'I% periodic limit cycles emerge from some of those series. 

Fisch, 0. (1991) A structural approach to the form of the population density func- 
tion. Geographical Anabsis 23,3: 261-275. 
In this paper the author explores "a comprehensive structural modeling approach that extracts analytical 
density functions answering questions raised by recent empirical studies." 

Foster, A. (1991) Are cohort mortality rates autocorrelated? Demography 28,4: 619- 
637. 
The author investigates whether heterogeneity in individual frailty leads to autocorrelation in cohort mor- 
tality rates. A simple model for the covariance of cohort mortality rates is used to construct a procedure 
to estimate the extent of heterogeneity in a population. The procedure is applied to French data. 

Hougaard, F?, Harvald, B., and Holm, N. V. (1992) Measuring the similarities be- 
tween the lifetimes of adult Danish twins born between 1881-1930. Journal of the 
American Statistical Association 87,417: 17-37. 
The survival of 8,985 like-sex twins born in Denmark is studied by means of models for bivariate data 
The degree of dependence is the focus of the study and is assumed to be generated by a common 
unobserved risk level. 

Martin, D., and Bracken I. (1991) Techniques for modelling population related 
raster databases. Environment and Planning A 23,7: 1,0694,075. 
Surface models of population information are proposed and lead to databases that can be used for a 
variety of spatial analyses. The techniques are illustrated with data from the united Kingdom. 

Pfeffermann, D. (1991) Estimation and seasonal adjustment of population means 
using data from repeated surveys. Journal of Business and Economic Statistics 9,2: 
63-175. 
Estimation and seasonal adjustments of population means are proposed on the basis of rotating panel 
surveys. The mean is decomposed into a trend-level component and a seasonal component Numerical 
illustrations are given. 



ABSTRACTS OF RELATED ARTICLES 

Rogers, A. (1992) Heterogeneity and selection in multistate population analysis. 
Demography 29,l: 31-38. 
Some aspects of the selection effects of heterogeneity in multistate populations are investigated (ag., the 
impact on death rates of recurrent events among interacting populations). 

Sobei, M. E., and Arminger, G. (1992) Modeling household fertility decisions: A 
non-linear simultaneous probit model. Journal of the American Stutistical Association 
87,417: 38-47. 
This article describes a new method for modeling household fertility decisions that takes into account 
how spouses inFluence each other. A trivariate distribution of the wife's and the husband's desire for 
children, and of subsequent fertility is used. 

van Imhoff, A. (1992) A general characterization of consistency algorithms in mul- 
tidimensional demographic projection models. Population Stdies 46,l: 159469. 
This article describes algorithms to solve consistency problems in multistate demographic projections. 
The specification of the objective function used in the algorithm leads to a solution that can be inter- 
preted as a generaliztion of the harmonic-mean approach. 

Yadava, K. N. S., and Singh, R. B. (1991) A probability model for the distribution 
of the number of of migrants at the household level. Genus XLW,1-2: 49-62. 
This article describes a probability model that describes the distribution of total number of immigrants 
from a household. The model satisfactorily fits several sets of observed distributions in rural areas. 


