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Abstract. In this paper we analyze a model for the HIV-infection transmission in 
a male homosexual population. In the model we consider two types of infected in- 
dividuals. Those that are infected but do not know their serological status andlor 
are not under any sort of clinical/therapeutical treatment, and those who are. The 
two groups of infectives differ in their incubation time, contact rate with susceptible 
individuals, and probability of disease transmission. The aim of this article is to 
study the roles played by detection and changes in sexual behavior in the incidence 
and prevalence of HIV. The analytical results show that there exists a unique en- 
demic equilibrium which is globally asymptotically stable under a range of parameter 
values whenever a detectionltreatment rate and an indirect measure of the bvel of 
infection risk are sufficiently large. However, any level of detectionltreatment rate 
coupled with a decrease of the transmission probability lowers the incidence rate 
and prevalence level in the population. In general, only significant reductions in the 
transmission probability (achieved through, for example, the adoption of safe sexual 
practices) can contain effectively the spread of the disease. 

Key words: Epidemiological models - HIV transmission - Bounded population size 
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1 Introduction 

In this paper we study the dynamics of HIV infection in a closed homosexual 
population and evaluate the effect that changes in sexual behavior have in the over- 
all incidence rate (number of new cases per unit time) and the prevalence of the 
disease. Avoidance of risky sexual behavior and the rise of sexual awareness con- 
cerning the life-threatening consequences of HIV infection have been very important 
factors in the decline of incidence rates among white homosexuals in the United 

(r States. Changes in sexual behavior involve both avoidance of high risk sexual 
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practices (e.g., anal intercourse, unprotected sex) and reduction in the number of :, sexual partners per unit time. Both of them reduce the level of sexual activity and : 
the probability of infection per sexual encounter. There is thus, a direct impact of - . 
these behavioral changes on the contact rates and transmission probabilities that c, 
infectious persons have with susceptible ones. 

Given the long asymptomatic incubation period of HN it is important to eval- - 
uate the role that knowledge of HIV seroconversion and the subsequent treatment ,, 
program of infected individuals plays in behavioral changes and, consequently, how 
it relates to the magnitude of incidence rates and prevalence. We assume in this 
work that a seropositive person is in fact infected and that he will develop full- 
blown AIDS in a median time of 10 years after exposure to the virus. There are , 
several studies that report the impact of the knowledge of serological status on 
sexual activity and practices. Hethcote et al. (1991) have included behavioral changes 
in their modelling of the AIDS epidemic in San Francisco, particularly, they studied 
the importance of different levels of sexual activity and its associated risk of HIV 
infection on the incidence rate and prevalence levels in a homosexual population. 
Other studies have been motivated by the impact that the proportion of cases de- 
tected undergoing therapy and medical treatment may have on the decrease in AIDS 
incidence, and the possible lengthening of HIV-incubation and delayed AIDS related 
mortality (Gail et al. 1990). Many other authors have explored the problem of as- 
sociated changes in sexual behavior when control measures are implemented in a 
population at risk. For example, Anderson et al. (1991) proposed a model for a pop- 
ulation with community-wide chemotherapy or irnrnunotherapy for HIV spread to 
highlight the importance of changing behavior and lowering infectiousness through 
treatment. Blythe et al. (1991) have studied an S-I model for HIVIAIDS dynamics 
where behavioral changes depend on the prevalence of the infection and the number 
of available susceptible individuals. Their model introduces a function F(S, I) that 
represents the fractional reduction in the effective maximal contact rate as a func- 
hon of the number of susceptible and infectious individual. Thus behavioral changes, 
represented by changes in the contact rate and probability of infection, respond to 

- the perception that the susceptible individuals have of the overall prevalence of the 
disease in the population. In a more recent technical report, Brauer et al. (1992) 
have considered metapopulation models and the effect that the perceived infection 
risk, as a function of the number of susceptible and infectious individuals, has on 
the recruitment rate of specific subgroups. 

We consider only a male homosexual population (no drug users or bisexuals) . ' 
whose infected individuals belong to either of two compartments. The first is com- 
posed of those recently infected individuals that have not changed risky sexual 
behavior. The second compartment is called the compartment of treated individ- 

newly infected individuals are detected and on the effectiveness of the treatment 

ment rate. We assume lower probability of transmission for these individuals and 
we will evaluate the impact of the treatment program in reducing prevalence by 
looking at the magnitude of the treatment rate and of the transmission probability 
in this compartment. Our assumption that the rate at which one alters sexual be- 
havior is proportional to the HN prevalence in the untreated population, has been 
documented by, for example Miller et al. (1990). 
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In Sect. 2 we present an a-1 model for the population dynamics of HIV in 
a closed homosexual population. We assume that detection implies treatment that 
may bring modified sexual practices, i.e., lowered probability of transmission. We 
then study the evolution of such a population when treatment programs are imple- 
mented. Hence, in the model we incorporate a (possible) change in sexual behavior 
in infected individuals. Without a cure or a vaccine against AIDS, change in sexual 
behavior is necessary in the prevention of AIDS. Many studies have shown a sig- 
nificant change toward safer sexual behavior among gay men, particularly in large 
urban areas. (See e.g., Becker and Joseph 1988, Wiktor et al. 1990, and McKusick 
et al. 1985). On the other hand, reports of unchanged (unsafe) sexual behavior among 
gay men in low ADS-prevalence areas are also in abundance. (See p. 83, Miller 
et al. 1990, for a partial list of such reports from 1988 to 1990). Sexual behavior is 
difficult to estimate because of a variety of technical and methodological constraints 
that need to be improved and developed (McQueen 1992). How to measure it and 
how to quantitatively evaluate its impact in the spread of AIDS are questions yet 
to be answered. For example, one study on homosexual men in the Netherlands 
(Griensven et al. 1989) reported that the seropositive individuals were more likely 
to have high-risk anal intercourse with their nonsteady partners than seronegative 
and untested men, although they were more likely to use condoms. Hence, not all 
individuals can be counted on to change their sexual habits and the relationship 
between AIDS and behavioral change is not altogether clear. However, it is widely 
known that the most effective way in which the incidence rate in HIV-infection can 
be lowered is by sexual education and awareness of the risk and life-threatening 
consequences of AIDS. In many studies of sexual mixing (e.g., Jacquez et al. 1988, 
Jacquez et al. 1989, Koopman et al. 1989), the level and pattern of sexual contact are 
assumed to be constant throughout one's (active) lifetime. Recently, Scalia-Tomba 
(1991) proposed a model which describes the dynamics of change in sexual be- 
havior from a high activity stage to a low activity stage and vice versa. The work 
of Castillo-Chavez et al. (1989.1, Castillo-Chavez and Blythe (1989) and Busenberg 
and Castillo-Chavez (1991), for examples, also address the problem of mixing of 
subpopulations where mixing may be age or risk dependent and thus introducing, 
implicitly, behavioral changes. 

Section 3 is devoted to the qualitative analysis of the model at the disease- 
free equilibrium to determine the relative importance of changes in incubation time, 
probability of transmission, and sexual behavior for an HIV infectious person. We 
also explore the relationship between the extensiveness of the treatment program 
and the prevention of the epidemic. Section 4 gives the results on the existence and 
uniqueness of the endemic equilibrium. In Sect. 5 we provide the stability analysis 
of the endemic equilibrium point and, finally, we give our conclusions in Sect. 6. 

2 Model formulation 

Consider a population of homosexual men subdivided Into w e e  groups: S (suscep- 
tible~), U (the recent infectives not yet in treatment), and I (infectives undergoing 
treatment) as.described in Sect. 1. The model describing the transmission dynamics 
of HIV within the population is then given as follows (the symbol ' I  ' indicates 
derivative with respect to time): 



with T(t) = S(t) + U(t) + I(t) being the total population. Here A is the constant 
recruitment rate; p-I average length of the sexually active life of an individual; B(t) 
is the force of infection term and v and v' are mean removal rates into the AIDS 
compartment of untreated and treated persons, respectively; a is the fixed number 
of individuals tested randomly for HIV per unit time .with the infectives entering 
into treatment and b is the cure rate of the treatment class. Currently 6 is equal to 
zero. 

It should be noted that in an AIDS model with screening proposed by Hsieh 
(1991), o is the fixed number of individuals screened during each time interval and 
subsequently, aU/T is the proportion of individuals screened to be HIV-positive 
and removed fiom the active population per unit time. The implicit assumption 
in that model is that all individuals tested positive can be successfully removed 
fiom activities likely to be of risk to the susceptible class by means .of education, 
changes in behavior, etc. An ongoing program in Cuba which screens the population 
15 years and older with those tested positive quarantined in controlled parks run by 
the government (see Perez-Stable 1991). The major distinction being made in the 
present model is that those individuals are not removed, but rather are taken into 
a separate treatment class in the active population where changes in AIDS-related 
death rates, probability of HTV transmission, and behaviour might occur. As a result, 
we assume that the number of new cases is proportional to the fraction of untreated 
infectives in the total population, in which case the recruitment rate into treatment 
is aU/T. Notice that since the total population T now includes the treated class, a 
more appropriate treatment is aU/(S + U). However, it will be shown in Sect. 3 that 
this change in treatment term does not alter the results of the analysis and therefore 
is not important to make such distinction in this article. (Another way to look at the 
treatment term is to view the number of individuals entering into treatment to be 
proportional to the prevalence of HIV in the population since changes in behavior 
might be directly related to the HIV prevalence in the population as reported by 
Miller et al. (1990). In this case o is just the constant of proportionality and the 
treatment term is o(U + I)/T. However, we shall not pursue this idea in the present 
work). 

The incidence rate, B(t)S, i.e., the number of new infectives in the population 
per unit time is given by 

U 
~ ( t )  = ~ ( t )  (ca p + c'a'f) T 

where a is the infectivity rate of a susceptible when in contact with an untreated 
infective, c is the contact rate (the average number of sexual partners per unit time) 
of a susceptible individual with individuals in class U; a1,c' are the corresponding 
parameters for the pair formation of a susceptible individual with an infective in the 
treatment class. We also assume that the average number of contacts of a susceptible 
with someone under treatment, c', will be less than or equal to the contacts with an 
untreated infective due to behavioral change. Furthermore, a' < a since treatment 
does not increase, and may possibly decrease, the transmission rate. Hence we have 

c'a' < ca . (2.5) 
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The net effect of treatment on the transmission of the disease is assumed to be re- 
flected in relation (2.5). The same assumption cannot be made on the mean removal 
rates due to AIDS, v and v'. With our earlier assumption of random screening, there 
is a distributed delay from the time of infection to the time of treatment for the 
treated infectives. Hence, even if we know for certain that, on average, treatment 
will retard the progression to full-blown AIDS, v' could still be greater than v if 
the patients entering treatment are heavily concentrated with individuals already in- 
fected for long periods of time - a likely situation. Thus, the relative size of v and v' 
depends on the magnitude of the delays and the extent to which the treatment pro- 
longs the incubation period. (Unless one assumes that the treatment is applied at 
the moment of infection, only then can we conclude that v > v'!). An improvement 
of this situation could be introduced by keeping track of the age of infection of 

.- 1 

individuals. In this model, however, we do not pursue W h e r  this possibility. 

3 Analysis of the model 

;I 
; Since the disease-free equilibrium of the system (2.1X2.3) is (A/p,O,O), the well- 

known basic reproductive number, the number of secondary infections caused by an 

. b 
infective among a population of susceptibles in one infectious period, is . . 
where we have labeled B = cap and p' = c'a'p'. 

t .  In epidemiological studies, the basic reproductive number is closely related to 
the outcome of an epidemic by the simple criterion that Ro > 1 implies persistence . - I  . of epidemic while Ro < 1 means the disease will die out. 

- , When a = 0, i.e., no one ih the population is being treated; we have I = 0. In 
,this case the system (2.1)-(2.3) simplifies to 

which are exactly Eqs. (2.5X2.6) in Hsieh (1991). 
Therefore we have the following result: 

Proposition 3.1 Let Ro = B/(p + v). IfRo < 1, the disease-free equilibrium (A/p, 0) 
is the unique equilibrium for system (2.1X2.3) and is globally -asymptotically 
stable. If Ro > 1 ,  there exists a unique endemic equilibrium (8, U) which is 
asymptotically stable for all initial populations except at the diseasefree 
equilibrium. 

For proof of this proposition, see Hsieh (1991). 
Our concern then is to know whether a positive value of a will prevent the 

convergence of populations toward an endemic population when Ro > 1. Recall 
that o > 0 implies that f i  > 8' (in other words, the situation a > 0 is accompanied 
by a reduction of transmission probability and/or risky sexual behaviors). At the 
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disease-free equilibrium (Alp, 0,O) the characteristic values of the Jacobian matrix 
are -p and the roots of the equation 

Performing some elementary computations and using the Routh-Hurwitz criterion, 
we obtain the following result on the stability of the matrix: 

Proposition 3.2 ~ e t  Jo denote the Jacobian matrix of (2.1)-(2.3). Given o > 0 
and j3 > p + v we have 

(a) The matrix Jo D unstable i f  j3' 2 p  + v' + 6.  
(b) When jI' < p + v' + 6, then Jo is unstable if a < b, and it is stable if 

5 5 a; where 

Proposition 3.2 gives us the local stability result of system (2.1)-(2.3) at the disease- 
fiee equilibrium. First we make the observation that b > a is equivalent to Ro > 1. 
Hence we can state the local stability property of the system (2.1)-(2.3) at disease- 
fiee equilibrium in terms of the basic reproduction number: 

Proposition 3.3 Given jI > p + v and 6 > 0. I f  jIJ > p + v' + 6, then Ro > 1 for 
all a > 0 and the disease-free equilibrium is unstable. If p' < p + v' + 6 then the 
disease-free equilibrium is unstable i f  Ro > 1 (5 > o), and locally asymptotically 
stable i f  Ro $ 1  (5  5 o). 

Note that if the treatment term is changed to oU,(S + U),Ro remains the same. 
The Jacobian matrix J will be different but, at the disease-free equilibrium, J will 
be the same as in (3.4) and hence Propositions 3.1, 3.2, and 3.3 follow similarly. 
Therefore having the treatment term proportional to the ratio of the untreated to 
the total population or the total untreated population does not alter our results. 
Notice also that when p' = c'a'p' is too large, the disease will persist no matter 
how comprehensive the treatment program is. However, if /.?' < p + v' + 6, the 
convergence of the population will depend on whether the treatment program is 
comprehensive enough compared to the threshold value for the size of treatment 
rate. 

4 Characterization of the endemic equilibrium 

To explore the behavior of the system when the disease-fiee equilibrium is unstable, 
we make the assumption that 6 = 0 and v = v' = F. To that end define the new 
variables 

and 
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With these new variables, system (2.1)-(2.3) is given by 

d -  -s= 1 -B(t?S-3, 
dt' 
d -  6 
- dtJ u =B(t?S- ee-afy, T 

d -  e 
- 1 = d ~ - e 7 ,  
dt' T 

with t ( t f)  = $ r f )  + O(tf) + I(tf) and B = b 5! + b 1 L  
T T .  

Setting the RHS of (4.1)-(4.3) equal to zero we find the expression for the 
coordinates of the endemic equilibria 

Substituting (4.4) into the expression for B and rearranging terms we obtain 

b'a' - b+iJT 1 and B = O .  B = - -  
eT + D' 

Adding together the expressions in (4.4) one obtains, for ? > 0 

which together with (4.5) gives a system of non-linear algebraic equations whose 
solutions correspond to the possible equilibria of system (4.1). Substituting (4.5) into 
(4.6) we have (to keep the notation simple, we drop the ' ' from the state variables 
below) 

Denoting by F(T) the RHS of (4.7), we prove now the existence of a fixed point of 
F .  We look at the fixed points only for values of T in [0, 11 since at the disease- 
free equilibrium T = S = 1. We thus expect that the spread of the virus in the 
population will produce T < 1. Also note that T(0) = 118 for 0 < T < 1, F(T) is 
always positive. Evaluating F at T = 1 we have 

It is clear that F(l) < 1 if 

If the disease-free equilibrium is unstable we have 13 < b (or equivalently, /3 > 
p + v under the condition 8 < b), then (4.8) is equivalent to b' 1 8  or a' < 
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Proposition 4.1 If 8 < b and condition (4.8) holh, there exists at  least one 
endemic equilibrium point for system (4.1)-(4.3) (and hence the same hold for 
system (2.1H2.3)). 

Proof: Condition (4.8) implies the existence of a value of f' such that F(?) = f' 
with 0 < ? < 1. QED 

To show uniqueness of the endemic equilibrium, we have the following result: 

Proposition 4.2 Given 8 < b, there exists at most one endemic equilibrium for 
system (4.1)-(4.3). 

Proof: It suffices to show that G(T) = F(T) - T has at most one zero in the interval 
[O, 11. From (4.7) 

Denoting the numerator and denominator of the RHS of (4.9) by N(T) and D(T) 
respectively, we note that the zeros of G(T) and N(T) coincide. Also 

with a0 = 303(8 - 1 - b),al = 2€J2(b + a1(8 - 1 - b) + d(6' - 1 - b)),a2 = 
801[b + b' + a1(8 - 1 - b')]. Clearly, a0 < 0. N(t) has two positive zeroes only if 
a;! < 0 and a1 > 0. But a2 < 0 implies al  < 0. Hence N(t) and G(t) have at most 
one zero in [0, 11. QED 

Propositions 4.1 and 4.2 combine to yield the following theorem summarizing the 
result on existence and uniqueness of the endemic equilibrium for system (4.1)-(4.3). 

Theorem 4.3 Suppose b > 8. System (4.1)-(4.3) has (i) a unique endePnic equilib- 
8 b - 8  rium if either b'B8 or d < b?; (ii) no endemic equilibrium if 

b' < 8 and a ' d w .  - 

Proof: For (i), either of the two conditions in the hypothesis implies condition 
(4.8). The result follows from Propositions 4.1 and 4.2. Conditions in (ii) imply 
F(0) > 0 and F(1) > 1, or equivalently, G(0) > 0 and G(1) > 0. By the proof of 
Proposition 4.2 and by continuity, a zero of G exists in [0, 11 only if it occurs at a 
local minimum. Suppose G(To) = 0 for some To in (0, 1). Subsequently, N(To) = 0 
and, moreover, N(0) > 0 and N(l) > 0 and To is the unique zero of N in (0,l) from 
the proof of Proposition 4.2. It follows that N(T) > 0 if T is in [0, I]-{To). We 
also know that N1(T) < 0 in [0, To]. But N1(0) < 0 implies a2 < 0 thus implying 
N1(T) < 0 for all T[O, 11, a contradiction. Hence G(T) has no zero. QED 

We now discuss some of the properties of the endemic equilibrium of system 
(4.1)-(4.3). Define the first term on the RHS of (4.5) as 
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Using (4.4) and (4.5), we have 

where 4 = 4(a1, T). Notice that 4 = 1 results in the disease equilibrium and 4 > 1 
yields the endemic equilibrium. Actually, it is easy to see that 4(a1,0) = Ro. 

The system (4.1)-(4.3) yields the equation for the total population 

At the endemic equilibrium, ,!? = =. - ' Hence from (4.1) and (4.2), 

4 = 4 (a', F)  = 
8?b+ bla' 8 -  1 =-, 

eF(ef '+a l )  O F - I  

Solving for the unique positive root P, we obtain an explicit expression for f', 

n b + a1(8 - 1 - b') + [(b + a'(8 - 1 - b')2 + 4b101(b - 8 - 1)]'f2 
T =  (4.1 3) 

2O(b-O+ 1) 

which is valid (0 < f' < 1) if and only if b'>= 0 or o' < CIA. 
The magnitude of the populations at equilibrium depends on the properties of 

4. Of interest in this work is the nature of the relationship between $,a' and T, 
the total population. Specifically we have 

a$ b l - b  -- - < 0 
80' (a1 + TO) 

if and only if b1 < b. 
This means that in order for treatment to be effective in bringing down the 

incidence rate of HN,  it is necessary to enforce behavior which will effectively 
reduce the transmission rate b', otherwise, no matter how large d is, the incidence 
rate will always be positive. 

Notice that 4 depends on the size of the total population. It can be easily verified 
that, as a function of T, 

due to the fact that in a larger population the contacts of infective individuals in 
either class is diluted among all the members (this is a consequence of assuming a 
homogeneous population and proportional mixing). 
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Next we look at the local stability property of the endemic equilibrium of the system 
(4.1-4.3). We consider the equivalent system for (T, S, I )  : 

The characteristic values of the Jacobian matrix of (5.1)-(5.3) at ( T , J , i )  are nega- 
tive when b > b'. Therefore the endemic equilibrium is locally asymptotically stable. 

For global result, let D={(S, U , I ) : S ,  U , I L O , S + U + I % l ) .  In the 
equivalent system for (5.1)-(5.3) D = {(T, S, I )  : S, Z 2 0 , s  +IS T % 1). We 
consider the 2-dimensional simplex C = {(S, U, I )  E D : S + 6(U + I )  = 11, or 
equivalently, 

1 +  8 -15 '  From (5.1), it is obvious that T = 0 in 2. Moreover, Tt < 0 if T > 4 
and TI > 0 if T < .-. It follows that C is an attracting invariant set in D 
and all flows in D obeying (5.1)-(5.3) tend toward Z monotonically, or equivalently, 

Lemma 5.2 Let D and C be defined as above. Then, all Jows in D obeying 
(4.1)-(4.3) tend toward Z as t goes to infinity. 

Therefore, all w-limit sets of (4.1X4.3) are contained in Z. Next we want to show 
the nonexistence of periodic solutions in C. 

Lemma 5.3 The system (4.1)-(4.3) has no periodic solutions (closed orbits, 
homoclinic loops, or oriented phase polygons) in C. 

Proof We make use of Corollary 4.2 in Busenberg and van deqDriessche (1990) 
to prove the nonexistence of periodic solutions. Let J , i  = 1,2, 3 be the RHS of 
(4.1), (4.2) and (4.3) respectively. Also let g = gl + gz + g3 be defined in Z with 

where the functions j are obtained by applying the relation S + O(rJ + - , -. 



From the construction of g, clearly we have gf = 0 on Z, where f = (fi,fi,ji). 
Since the normal vector to Z is n=(l, 0, 0), we also have, after some elementary 
computations: 

By Corollary 4.2 of Busenberg and van den Driessche (1990) there is no periodic 
solution of (4.1)-(4.3) in C. QED 

We now give the main global result: 

Theorem 5.4 Suppose b > 8. 

(i) If b' < 8 and 0'2 w, the diseaserfree equilibrium of system 
(4.1)-(4.3) is globally asymptotically stable in D. 

8 b - 8  (ii) If b' 2 8 or d 5 &-), the unique endemic equilibrium in (4.4) is globally 
asymptotically stable in D* = D - {(S, U, I )  E D : U = I = 01, and all solutions in 
{(S, U, I )  E D : U = I = 0) tend toward the disease-jiree equilibrium. 

ProoJ (i) From Lemma 5.2, all solutions in D tend toward C for t sufficiently 
large and Z has no periodic solutions by Lemma 5.3. Hence all solutions in D tend 
toward the only equilibrium of the system, the disease-free equilibrium. Since this 
equilibrium is locally stable, it is also attracting for all solutions (S(t), U(t),I(t)) 
in D. 
(ii) Clearly, when U(t) = I(t) = 0, the system (4.1)-(4.3) becomes U1(t) = I'(t) = 
0 and S1(t) = 1 - S(t), so the disease-free equilibrium (1, 0, 0) is the attractor in 
{(S,U,I) E D :  U = I = 0). 

Now we consider solutions in D*. We know C is an attracting invariant set. We 

also know that when b' 2 0 or d 5 .w, - the disease-free equilibrium is unstable - - 
and there is a unique endemic equilibrium (3,0,9) contained in C and it is locally 
asymptotically stable by Proposition 3.1. Since the disease-free equilibrium is un- 
stable and there is no periodic solution in Z, every solution in any neighborhood 
of the disease-free equilibrium in D* will leave that neighborhood for t sufficiently 
large; because otherwise, there would have to be homoclinic orbit containing the 
disease-free equilibrium in Z. 

Once we know the disease-free equilibrium does not attract anything in D*, 
by Lemmas 5.2 and 5.3, and the local asymptotic stability of the unique endemic 
equilibrium, this equilibrium must be the global attractor in D*. QED 

We now proceed with a few words on the stability of the equilibrium points of 
system (2.1)-(2.3) which represents the case when v = v' and 6 = 0. Equation (3.1) 
can be rewritten as 

Since the parameters are all positive, Ro is a continuous function in me variable 
1' and a. When fi = /?' and b > ,u + v hold, Ro(/3',a) > 1 and the disease-free 
equilibrium is unstable. Furthermore, in this case there exists a unique endemic 
equilibrium (3, o,?) as shown in the preceeding section. 
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Using a continuity argument, together with Proposition 3.3, and Theorem 5.4, 
we have the following result for the system (2.1)-(2.3) in a small neighborhood of 
Iv -v ' l  = 0 and 6 = 0. 

Proposition 5.5 Given Iv - v'l small, 6 small and positive, and b > p + v, if 
f l z  p -k v + 6. then the disease-free equilibrium for system (2.1)-(2.3) is unstable 
and there exists a unique endemic equilibrium which is globally asymptotically 
stable in D*. If, however, 8' < p + v + 6, then the disease-free equilibrium is 
globally asymptotically stable provided a25  and there is no endemic equilibrium. 
If o < 3 then the disease-free equilibrium is unstable and there exists a globally 
asymptotically stable unique equilibrium point. 

6 Conclusions 

The life-threatening consequences of exposure to HIV-infection have already had 
a very important impact in the sexual practices and sexual behavior of the popu- 
lation at large, not only of the white homosexual populations in whlch the virus 
first appear. It is well known, among those in charge of coping with the control 
of the virus, that the most effective way of reducing the incidence rate and low- 
ering prevalence levels, is to educate the general population and to make it aware 
of the consequences of engaging in unprotected sex or other types of risky sexual 
behavior. In this work, we have centered our attention in two of the factors that, 
from the epidemiological point of view, are more directly affected by these sexual 
education programs. One is the rate at which new cases are detected and subjected 
to treatment and surveilliance of some type, and the other is the probability that a 
given infectious individual has of transmitting the disease given that it has engaged 
in sex with a susceptible person (for studies that report results of the impact of 
HIV-infection awareness, see McKusick et al. 1985, Wiktor et al. 1990). A success- 
ful program in the prevention of HIV-infection must, on one hand, have a relatively 
effective method of detecting and putting into treatment new cases in a short period 
of time, and also, it must decrease the magnitude of the probability of transmission 
of infected individuals either by reducing the susceptible contact rate with infec- 
tious individuals, by reducing the infectivity of the infectious sexual contacts or by 
reducing the mixing probability of individuals with opposite HIV-status. The re- 
sults in earlier sections highlight the importance of the net transmission rate p' of 
those under treatment. On the population level, lowering of the transmission rate f l  
is necessary in achieving lower prevalence. To eradicate the disease, however, we 
also need to have a high turnover rate of infectious individuals into treatment. In 
other words, small values of f l  and large a are necessary and sufficient to elimi- 
nate the disease in the population. To illustrate the previous comment we present in 
Fig. 1 the case when there is no treatment available for the infected population. The 
convergence to the endemic equilibrium is fast. In this example we have taken the 
initial population S(0) = 30 000, U(0) = 100,1(0) = 0. 

If we assume now that HIV-infected persons are detected and perhaps medically 
treated, but the sexual education program, for example, is unable to change sexual 
practices of high risk we still have a high prevalence of HIV in the population. This 
case is illustrated by Fig. 2 where we take a = 1,000 but = f l  = 1.0. Moreover, 
even if /3' is sufficiently low (so that b' < 8), but not enough infected individuals 
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Fig. 1. Simulation of model (2.1)-(2.3) covering a time lapse of 50 yr. Parameter values are 
A =  1500,fi = 1 . 0 , ~  = 1/30,v = 1/10 and a = 0 
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Fig.2. Simulation of model (2.1)-(2.3) covering a time lapse of 50 yr. Parameter values are 
A = 1500,/3 = l.O,pi = 1 . 0 , ~  = 1/30, v = v' = 1/10 and a = 1000 

change sexual practices or are detected, i.e., o is not large enough, the population 
still tends toward the endemic equilibrium (see Fig. 3). 

Note, however, that in Fig. 3, most of the infected individuals belong to the 
treated compartment and thus the incidence rate is reduced. Contrary to screening 
models (Hsieh 1991), where programs do not lower HIV incidence unless they are 
comprehensive enough to eradicate the disease eventually, a good treatment program 
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Fig.3. Simulation of model (2.1)-(2.3) covering a time lapse of 50 yr. Parameter values are 
A = 1500,b = l.0,j' = 0 . 1 , ~  = 1/30,v = v' = 1/10 and a = 10000. Initial conditions same as in 
Fig. 1 

which successfully alters the risky sexual practices or lower the infectiousness of 
the treated infectives will be sufficient to lower HIV incidence. Figure 3 also shows 
that treatment does not only have the potential to prolong the patient's survival time, 
but also slows done the spread of HIV in population regardless of the scale of the 
program, as long as one can ensure its effectiveness is lowering the net transmission 
rate /I1. 

In Fig. 3, the threshold value i3 given in Proposition 3.2 is set equal to 156,000. 
In this example it can be seen that lowering the net transmission rate ten-fold, from 
p' = 1.0 to /I' = 0.1, will not effectively eradicate the disease unless the screen- 
ing rate per year is, initially, significantly larger than Alp per year (45,00O/year 
in this example). On the other hand, since the threshold value i3 is an increasing 
function of /3', we can lower the threshold i3 to some extent, by lowering PI. In 
Fig. 4 we let /3' = 0.01, i.e., the net transmission rate is lowered 100-fold! Then 
the threshold value 8 is approximately 42,162lunit time. In this example we have 
set S(0) = 45,000 and U(0) = 100. If a = 42,50O/year (around 95% of the pop- 
ulation per year), the population tends to the disease-free equilibrium. However if 
a = 42,00O/year, for example, and all other parameters are the same, the population 
tends to the (globally) stable endemic state (see Fig. 5). 

The simulations illustrate that, in general, it would be too much to expect of a 
treatment program to eliminate the disease altogether. But, as long as it effectively 
lowers the net .transmission rate of the treated infectives, it will reduce the incidence 
rate and the prevalence of the virus. 

Buehler et al. (1992) reported that in the US, AIDS surveillance identifies be- 
tween 70-90% of cases of men in the age group of 25-44 years old. The effect of 
surveillance and notification is important in altering sexual behaviors of high risk. 
Giesecke et al. (1992) reported that seropositive individuals diagnosed in 1989 or 
later engaged in less high risk sexual practices than those individuals diagnosed 
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Fig.4. Simulation of the long term behavior of model (2.1)-(2.3). Parameter values are same as 
in Fig. 3 except /3' = 0.01, and a = 42500. S(0) = 45000, U(0 )  = 100,1(0) = 0 .  S(t)  has been 
rescaled and S(t)/100 is the quantity shown. 
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Fig.5. Simulation of the long term behavior of model (2.1)-(2.3). Parameter values and initial 
conditions the same as Fig. 4 except a = 42000. S(t) has been rescaled and S(t)/100 is the quantity 
shown 

earlier. The effect of surveillance, included in our model by 'treatment', has an 
impact in the magnitude of p' (transmission probability) since the information ob- 
tained through surveys is used to monitor the spread of the disease, to optimize the 
allocation of resources, and to help in the assessment of control measures (Gertig 
et al. 1991). There are, however, problems. The understanding of behaviors that 
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put at risk susceptible individuals is far from clear (McQueen 1992) because of the . 

methodological and technical problems associated with surveys and data collection. 
What is clear, though, is that only through the adoption of prophylactic measures * 

to prevent infection, one can expect to temper the spread of the epidemic to the 
general population. 

This model also can be used to assess the relative effect on disease spread of 
chemotherapeutic and other foms of medical treatment (e.g., drug administration). 
These factors apparently can alter either the level of defenses in the body andlor 
lengthen the duration of the incubation period to the onset of full-blown AIDS. 
Both have an impact on the magnitude of the parameters of the basic reproductive 
number in (3.1), specifically j?,p and v and v'. 

Finally, a few words, about v' and 6. From Proposition 3.3, a necessary condition 
for eradication of the disease is p' < p + v' + 6. Hence even if the cure rate 6 is 
very high, we still need j?' relatively small to have an impact on the population 
level. Otherwise people would simply be cured and then re-infected. As for v', 
prolonging the survival time to full-blown AIDS implies decreasing v', which would 
have an adverse effect if 81 is fixed. In other words, given 8' is unaltered, prolonging 
the incubation time only prolongs the time a susceptible can be exposed to these 
infective individuals. 
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