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ABSTRACT 

A model is proposed in which the spread of HIV/AIDS in the community is 
mainly due to the sexual interaction between a core group of female prostitutes and 
young unmarried males. Several threshold parameters are obtained that determine 
persistence of endemic proportions, persistence of total population, and the persis- 
tence of infective population given the extinction of endemic proportions in a 
population tending to infinity. Conditions are given for the existence of multiple 
endemic equilibria as well as the existence of multiple stable equilibria with 
separatrix and their asymptotic behavior and biological significance are discussed. In 
all cases, global analysis is accompanied by bifurcation diagrams, and numerical 
examples are provided for some particular cases of interest. This model was pro- 
posed with the recent rapid growth of the HIV/AIDS epidemic in Asia in mind. 

1. INTRODUCTION 

Transmission of the human immunodeficiency virus (HIV) is continu- 
ing in all affected regions, but in south and southeast Asia there 
appears to be an explosive growth in the prevalence of infection. In 
1987, HIV infections among prostitutes in Thailand were rare, but by 
late 1991 almost 15% nationwide were infected according to Mann [15]. 
By 1 July, 1991, only 106 AIDS cases had been reported officially in 
Thailand [6], but the 1992 overall estimate is between 300,000 and 
500,000 HIV-infected [18]. As of 1 July, 1991, only 65 AIDS cases had 
been reported in India [15], but by early 1992 an -estimated 1 million 
people were infected with the virus as reported by Wallace [23]. In all, 
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at least 1-1.5 million Asian adults had been infected by 1992 according 
to [IS]. With the increasing international travel to and from Asia (the 
second most common destination for travelers from the United King- 
dom after sub-Saharan Africa according to Hawkes et al. [9]), it is a 
situation to be concerned with. 

This very rapid spread in Asia is due, at least in part, to the 
widespread use of prostitutes, or "sex workers" as they are called. In 
many countries, promiscuous sexual behavior is condoned for men as 
long as the women are prostitutes. It is said that Bombay, India has 
more than 200,000 prostitutes, and according to a recent survey as many 
as 30% are infected [23], and the percentage is growing rapidly (see 
Figure 2 in [18]). In addition, the blood supply in India is not universally 
screened for HIV. In Thailand also, prostitution is a central problem, 
and the government has begun programs to distribute condoms and an 
education program for boys to dissuade them from visiting prostitutes. 
Nevertheless, an explosion of HIV infection seems to have been taking 
shape in the last few years. According to [18], infection levels of 44% 
were found in female sex workers in the northern part of Thailand. By 
December 1991, women at antenatal clinics in Thailand were tested 
HIV positive at a mean rate of 1.0%, blood donors at 1.25%, and 
military conscripts (men of age 21) at 2.98% nationwide. Although the 
early spread was mainly in the intravenous drug-using community, today 
the vast majority of new cases are members of the general population 
contracting HIV infections through heterosexual intercourse. 

It is reported that in these Asian countries, married individuals have 
relatively few extramarital sexual encounters or divorces. In a 1990 
survey of partner relations in Thailand [19], 84.7% of the male respon- 
dents currently married reported having no outside sexual encounters in 
the previous 12 months. As can be expected, the number is much higher 
for males in the rural regions (88.4%) than in urban areas (73%). The 
corresponding numbers for female respondents are 99.6%, 99.8%, and 
99%, respectively. One should note, however, that cultural norms in 
Thai society opposing women having premarital or extramarital sex 
would favor some underreporting. Moreover, the same survey reports 
that only 12.2% of the married men had paid for sex in that time period 
while the figures were 35.9% for never-married males and 50% for 
formerly married men. In a survey of new army recruits involving 
21-year-old young men from rural Thailand, 73% said that their first sex 
experience had been with a sex worker, and virtually all had visited 
prostitutes by the time they were 21 [23]. Hence the major source of 
customers of the sex industry in Thailand is the single male population. 
A 1990 survey [I91 also reported that only 5.3% of all respondents were 
divorced, widowed, or separated. 
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In this paper we formulate a mathematical model that explicitly takes 
account of prostitution and demography. To  obtain a model that em- 
phasizes these aspects and yet is amenable to mathematical analysis, we 
make various simplifying assumptions, which are explained below. We 
explore in a qualitative and quantitative way how prostitution and other 
factors affect the rate of spread and prevalence levels of infection. 

Another model that also includes heterosexual transmission and 
prostitution is given by Waldstatter 1221. The model in [22] is similar to 
ours in that it contains a group of prostitutes, a group of single males, a 
group of single females, and groups of pairs. It contains four kinds of 
pairs, whereas we have put all those with at least one infected partner 
into one group. It is more general than ours in that prostitutes can 
interact with men who are either single or in a couple, and also in 
allowing break-up of pairs. On the other hand, in [22], when a prostitute 
retires she is removed completely from the population, whereas in our 
model she moves to the single female group and may eventually enter a 
pair. Study [3] has shown that many sex workers in Thailand retire to 
reintegrate into village society without much difficulty. Also, in [22] 
recruitment into the core is assumed to be constant rather than propor- 
tional to the number of single males as in our model. Waldstatter gives 
a partial stability analysis of the disease-free equilibrium but no other 
analysis. He leaves open questions about endemic equilibria or limiting 
proportions of infectives. Our simplifying assumptions have allowed us 
to perform a complete analysis of our model. 

Our analytical results are formulated in terms of several key quanti- 
ties, which are combinations of the biological and sociological parame- 
ters in the model. Among the more important of the latter are the 
contact rate of prostitutes (number of sexual contacts per unit time), the 
immigration and emigration rates among prostitutes, and the transmis- 
sion probabilities of infection. The combination quantities include the 
basic reproductive number R,, which is often used as a predictor for 
whether an epidemic can occur or be sustained, but as we shall see 
there are other important quantities that must be considered. 

In Section 2, we formulate the model. In Sections 3 and 4, we 
describe some mathematical results that have been proved. The proofs 
themselves are in part put in an Appendix. In Section 5 we include some 
numerical examples and bifurcation diagrams for some particular cases 
of interest, and in Section 6 we discuss the biological interpretation of 
the threshold parameters. 

2. THEMODEL 

The model considers heterosexual transmission of HIV in a commu- 
nity in which married persons have negligible extramarital affairs and in 
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which almost all premarital sexual activities are between young men and 
a core group of female prostitutes or "sex workers." The 1990 Partner 
Relations Survey in Thailand [19] reported that 43.5% of the never 
married/partnered male respondents had had at least one sexual asso- 
ciation in the previous 12 months while 99% of the never 
married/partnered female respondents had had no sexual association 
in the previous 12 months, and we note the similarly high percentage 
for females with no sexual partners other than their spouse. One should 
note, however, that in a study of sexual networking in Thailand by 
Napaporn et al. [16], only 37% of the males with multiple partners 
surveyed had no noncommercial sex partners (other than their spouses), 
exposing the need for further study on sexual networking in Thai 
society. 

We therefore consider four population groups: the core group, young 
unmarried males, young unmarried females, and married couples. Within 
each group, there is a further division into infected and susceptible 
(noninfected) individuals. Thus we introduce the following symbols. 

Fo = number of susceptible core females, 

fo = number of infective core females, 

M ,  = number of susceptible unmarried young males, 

m,  = number of infective unmarried young males, 

Fl = number of susceptible noncore young females, 

f, = number of infective noncore young females, 

S, = number of couples in which both partners are susceptible, 

I ,  = number of couples in which one or both partners are infective. 

The numbers of young males and females refer to those who are 
sexually active. We make note of the following assumptions, which we 
make because we wish to focus on the role of prostitution as the 
primary mode of spread. 

Assumptions. Homosexual and drug activity are not included in this 
model. Sexual contact of single males other than with prostitutes is 
negligible, since unmarried females who are not in the core have a 
negligible amount of sexual contact. Individuals in pairs do not have 
extramarital contacts. There is no break-up of pairs. All couples are 
either susceptible or infective. 

a*(M,  + mi), the rate at which core females are recruited, is assumed 
to be proportional to the number of young men. a* ,  a positive 
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constant less than 1, is the constant of proportionality at which the 
core prostitutes are recruited. The "supply and demand" hypothesis 
is intuitively plausible. It also allows us to obtain a complete analysis 
of the model that would not have been possible with a constant 
recruitment rate. 

pi and pi (i = 0,1,2), removal rates due to death or removal from the 
geographic area or withdrawal from sexual activity in various popula- 
tions. For the sake of brevity, we hereafter refer to this as the rate of 
removal. 

cf, the contact rate or number of sexual contacts per unit time for core 
females. 

c,, the contact rate or number of sexual contacts per unit time for 
young males. 

p, the male-to-female transmission probability per sexual contact. 
p, the female-to-male transmission probability per sexual contact. 
po, Po, the respective rates at which susceptible and infective core 

females "retire" and move to the young female population category. 
A 1992 survey of 1012 commercial sex workers in Thailand [2] 
reported that the mean age of the commercial sex workers surveyed 
is 22.4 years, and 54% said they started this profession at age 19 or 
younger; hence a typical currently working sex worker would have 
worked approximately 3.5 years. Many of those surveyed responded 
that after their debt to their employer was paid off, they would like to 
return home to work on a farm or start their own business in the 
rural village. 

o,, F,, the pairing rate of susceptible and infective young males who 
form couples. 

26, the per capita rate at which new mature individuals enter the young 
male and young female groups (births per susceptible couple times 
the survival fraction). A 1 : 1 sex ratio is assumed. 

o, a factor multiplying b for births to infective couples, represents the 
reduced probability at which children of infective couples will survive 
to enter the sexually active population compared to children of 
noninfective couples. 

We assume the following hypotheses on these parameters: 
HI .  c,(m, + M , )  = cf( f, + Fo). 
H2'. Po + p, > pO + pO. 
The first hypothesis states that the total number of contacts made by 

males with females per unit time is equal to the total number of 
contacts made by females with males per unit time. An underlying 
assumption implicit in H 1  is that cf > c,, since the total number of 
young males, m, + M,,  must be larger than that of core females fo + Fo. 
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We note then that we have 

a * ( m , + M , ) =  f f ( fo+Fo) ,  (1) 

where c, a = cf a* .  Since our model does not postulate constant popu- 
lation sizes, the parameters c,, cf, a ,  and a* will in general vary with 
time or according to the state of the system and the preference of the 
individuals. Several authors have commented on this modeling problem, 
including Huang et al. [12], Lin et al. [14], and Lepont and Blower [13]. 
Lepont and Blower [I31 suggested several possible approaches: (1) 
Assume c, is constant and solve for cf(t) = c,(m, + M,)/( fo + F,), 
which they termed "female flexibility"; (2) "male flexibility," which is 
similar but holding cf constant; (3) "alternate flexibility," where c, and 
cf are assumed to be constant sequentially; (4) "opposite sex availabil- 
ity," where the contact rates are modified in proportion to the change in 
the availability of the opposite sex. However, evidence so far from 
Thailand, while indicating that condom use has increased in sex worker 
populations, does not show a major decrease in number of sex workers 
or in contact rates (T. Brown, personal communication). The study by 
Bhassorn et al. [2] reported that although awareness of AIDS among 
the commercial sex workers is high, most of the sex workers surveyed 
said that they would continue working in this profession for economic 
reasons. The data from Thailand in general do not suggest what might 
be a realistic choice or set of choices. Consequently, in this paper we 
take these parameters to be constant as a first approximation. Our 
equations and results therefore may be regarded as approximating the 
real situation, and we hope they will provide useful benchmarks for 
further studies. Hopefully, with more future studies on sexual patterns 
of these Asian societies, we can further explore this issue. 

A second implication of H1 is that the ratio between the number of 
core females and the number of single males remains constant even 
while the size of the population varies. However, this is consistent with 
our "supply and demand" hypothesis, where the core prostitutes are 
recruited in constant proportion to the number of single males. 

The second hypothesis is based on the plausible assumption that the 
rate of "removal" plus "retirement" from the group of infected core 
females is greater than the same rate for susceptible core females. The 
following hypothesis will also be required in some of what follows. 

H3'. 3, + 5, + a > Po + Po. 
Hypothesis 3', which is somewhat less intuitive, says that the rate of 

"removal" plus pairing of infected males, plus the recruitment rate a, is 
greater than the rate of "removal" plus "retirement" for infected core 
females. This assumption, along with H2', will make our model equa- 
tions well posed. 
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An important additional assumption concerns the nature of the 
mixing of subgroup members. General discussions of mixing may be 
found in [4, 51, where general axioms are formulated. Here, we assume 
so-called proportional mixing. The incidence rate of new infections 
within the core group may then be written as 

m1 m1 H4. 
PF0 m, + M, =c, PFo- f n  + Fo' 

The quantity on thi left may be justified as the product of c,, the 
number o f  contacts of a core female, times the number of susceptible 
core females, times the fraction ml /(m, + MI)  of contacts that are 
with infected males, times the probability P of transfer of infection per 
contact. The quantity on the right is equal, because of HI. It is also 
reported by Padian et al. [17] that the male-to-female transmission 
probability /3 is greater than the female-to-male transmission probabil- 
ity P.  

We now write the equations of our model. The prime denotes 
differentiation with respect to time t .  Explanations of the various terms 
will follow the equations. 

Fo Fh = a * ( m l  + M,)  - poFo - poFo - c, P- f o +  ~ ~ ~ 1 '  P a )  

The last term in Equation (2a) represents the incidence of new 
infections, as previously explained. The first term represents the recruit- 
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ment of new core females, which (as already stated) is assumed to be 
proportional to the number of young males. We have in mind a 
situation in which the population under study is in an urban area and 
the recruits are drawn from rural areas, as is usually the case in 
Thailand [2]. Since we are not modeling the rural population, we are 
implicitly assuming an unlimited resource for recruitment. (Alterna- 
tively, it could be assumed that recruitment is from within the studied 
population, but a recruitment term of the form a* (m, + MI) might 
then be more appropriate.) The next two terms represent "removal" 
and transfer out of the core group either back to  the rural population or 
into the noncore female group as shown here in Equations (2g), (2h). 
The first term in Equation (2b) is the incidence of newly infected, and 
the other two terms are similar to those in Equation (2a). 

In Equation (2~1, bS, gives the rate of birth and survival to maturity 
of young males from susceptible pairs, and bwl ,  the same rate for 
young males from infected pairs. There is no similar term in the 
equation for m',, Equation (2d), because vertical transmission is not 
included in the model. The second term in Equation (2c) and the first 
term in Equation (2d) represent incidence of infection of males due to 
contact with core females. [The ratio f, /( fo  + Fo) is the proportion of 
infected females in the core.] The terms p ,M,  and F , m l  are for 
"removals," and the terms (T, MI and G, m ,  give the rate at which males 
form new pairs. 

We now explain the terms representing formation of pairs. More 
general discussion of such pairing functions may be found, for example, 
in Hadeler et al. [8] or Waldstatter [22]. If a ,M,  is the rate at which 
susceptible males form pairs, we may assume that these are formed with 
susceptible and infected females according to their respective propor- 
tions. Let 4,,, +,,, 4,,, and 4,, denote the rate of formation of pairs 
from young males and females in which both are susceptible, the male is 
infected but not the female, the female is infected but not the male, and 
both are infected, respectively. Then 

Similarly, if C,m, is the rate at which infected young males form pairs, 
then 

$10 = ~ I ~ I F I  / ( f ~ +  F I ) ,  ( 5 )  
411 = c , m , f l  / ( f l  + F 1 ) .  (6) 

Now Equation (3) represents the rate of addition of susceptible pairs 
(the S,  equation); the sum of (3) and ( 5 )  gives the rates of removal of 
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susceptible females into pairs; the sum of (4) and (6) gives the rates of 
removal of infected females into pairs; and the sum of (4)-(6) gives the 
rate of formation of new pairs with one or both parties infected (the I, 
equation). The positive term in the S2 and I; equations should be clear, 
and the negative terms represent "removal." Finally, the F; equation 
contains a birth term and the term poFo representing emigration from 
the core. The meaning of the terms in the f; equation should now be 
clear. We have assumed that the term Po fo, representing migration out 
of the core, is the only source of infected young females and that there 
is no rerecruitment from the f, group back into the core. 

3. EQUILIBRIA OF THE MODEL 

By using hypothesis HI, we may replace a*(rnl + MI) by a (  fo + Fo) 
and then decouple the equations for Fo, fo, and rn, from the others. 
Moreover, by redefining pO to be the former p0 + p,, Po to be the 
former Po + Po, and p1 to be the former 2, + (TI, we may write these 
equations in the following simpler forms: 

Hypotheses H2' and H3' now take the forms 

and 

Note that H2 and H3 together imply 3, + a > pO. 
We now introduce the notation 

Simple calculation then gives the following equations. 
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with y, + y, = 1 and 0 g y, g cf / cm.  It is easy to see from these 
equations that the positive orthant in y,y,y, space is invariant. Now we 
shall consider the two-dimensional system, which we obtained from (11) 
and (131, 

System (14), (15) is well posed by H2 and H3, that is, 0 g y, g 1, 
0 < y, < cf / cm.  Our first result concerns equilibria and phase plane 
analysis for this system. One equilibrium is ( y,,y3) = (l,O), and a 
straightforward calculation shows that at any other equilibrium (y,, y,), 
y, must satisfy the quadratic equation 

where 

The following result is proved in the Appendix in the usual way, by 
examining the eigenvalues of the linearization. 

PROPOSITION 1 

Assume that HI-H4 hold. Then the disease-free equilibrium at (1,0), 
abbreviated DFE, of system (14), (15) is locally asymptotically stable i f  
Rf  < 1 and unstable if R > 1, where 

I f  HI, HZ,  and H, hold but H, does not, then the above holds i f  - 
p, + cu > pO, but (1,O) becomes unstable if 7i, + cu 4 p0. 

Rf  determines the local stability of DFE. In some cases it determines 
whether the infectious fractions will die out, while in other cases it 
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merely determines whether bifurcation can occur. All this will be made 
clear shortly in the next theorem. We should add, at this point, that Rf 
is not the basic reproduction number for the infectious populations in 
our model because the issue here is the persistence of endemic frac- 
tions. The basic reproduction number for the infectious populations will 
be given in Section 4. 

We now examine the question of existence, uniqueness, and stability 
of equilibria with 0 < y ,  < 1. Several cases must be considered, depend- 
ing on the sign of the quantity A.  Observe first that 

Since H3 implies C < 0, there are only three possible cases: ( I )  A > 0; 
(11) A = 0; (111) A < 0. We describe all three cases in Theorem 2. 

THEOREM 2 

The existence, uniqueness, and stability result for positive equilibrium of 
system (14), (15) is summarized in Table 1. 

Before turning to a discussion of the full model, we shall complete 
the analysis of the two-dimensional system (14), (15). Theorem 2 is 
proved in the Appendix, as is also the following. 

PROPOSITION 3 

Assume that H1-H4 hold. Then system (14), (15) has no periodic 
solution (periodic orbits, homoclinic loops, or oriented phase polygons) 

TABLE 1 

Existence, Uniqueness, and Stability of Positive Equilibrium 

Number of positive 

f equilibria Stabilitya 

Case I. A >  0 > 1  1 AS 
< 1 - - 0 - 

Case 11. A  = 0 > 1  1  AS 
< 1  - 0  - 

Case III. A < o 3 1  1  AS 
= 1 O ( A 2 C )  - 

1 ( A < C )  AS 
< 1 0  ( B 2  < 4AC)  - 

1  ( B 2  = 4AC)  Stable 
2 ( B 2  > 4AC) One AS, the other 

unstable 

aAS = locally asymptotically stable. 
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with orbit in the invariant set 

Now we are in position to give the following theorem, based on 
Theorem 2 and Proposition 3. 

THEOREM 4 

(1) If A >, 0, then the DFE at (1,O) is globally asymptotically stable 
(abbreuiated G.A.S.) within the set S i fRf  9 1. If Rf > 1, then the unique 
endemic equilibrium is G.A.S. within S. 

(2) I f  A < 0, then the above result still applies unless ( i )  Rf = 1 and 
A < C or (ii) R f  < 1 but B2 a 4AC. For case (i) ,  DFE is linearly stable 
but not attracting in S. So the unique endemic equilibrium is G.A.S. in S. 
For case (ii), when B~ > 4AC there are two endemic equilibria in S, the 
one with smaller y,  ualue is asymptotically stable and the other unstable. 
The stable manifold of the unstable endemic equilibrium divides S into two 
regions that are the domains of attraction for the asymptotically stable 
endemic equilibrium and the asymptotically stable DFE. Hence we have a 
saddle-node connection. When B2 = 4AC, we have a saddle-point bifur- 
cation of the preuious case, so there is a unique endemic equilibrium. The 
stable manifold of the endemic equilibrium once again divides S into two 
regions that are the domains of attraction for itself and DFE. 

See the proof in the Appendix. 

4. ANALYSIS OF THE COMPLETE MODEL EQUATIONS 

We now turn to a discussion of the full model given in system (2). Let 
To = fo + F,, and let No = fo  + Fo + m, + M ,  =(I+ cf /c,)To be the 
total population of sexually active persons. Then 

and 

Define R, by the equations 

where yz denotes an endemic equilibrium value of y,. 
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LEMMA 5 

Assume case I  or II ( A  2 0). If R ,  < 1, then No(t) tends to 0 as t tends 
to w. If R ,  > 1, then N,(t) tends to m. The asymptotic rate of decrease or 
increase is a - p, = p,( Rl - 1) i fR f  < 1 and [ p, + ( P o  - pO)y; I( R ,  - 1) 
i f R f  > 1. 

Proot If Rf G 1, then y, tends to zero, so the limiting equation is 
Nh = No[ a - pol = NO pO(R1 - 1). If Rf > 1, the limit equation is NA = 

No[ po + ( P o  - pO)y: ]( R ,  - I), and the result follows at once from these 
scalar equations. 

THEOREM 6 

Assume case I  or II. The limiting values of variables Fo, fo, ml  , M I  are 
as indicated in Table 2, where Ro is defined to be 

Proof: First suppose that Rf G 1. Since the disease-free equilibrium 
of system (14), (15) is asymptotically stable by Proposition 1, there are 
no periodic orbits by Proposition 3, and all solutions in the first 
quadrant are bounded, it follows from the PoincarC-Bendixson theorem 
that the disease-free equilibrium (1,O) is globally asymptotically stable. 
Thus y, tends to 1, y, = 1 - y,  to 0, and y, to 0. We know from Lemma 
5 that No tends to 0 if R ,  < 1, and to if R ,  > 1. If No = f ,  + F, + rn, 
+ M, tends to 0, then each of these four variables tends to 0 since they 
are nonnegative, and this establishes the first row in Table 2. If R f  > 1, 
the proportions tend to the endemic equilibrium. It follows from Lemma 
5 that if R,  < 1, No tends to 0 and hence f,, F,, m,, M,  all tend to 0 
automatically, independent of the value of R,. Likewise for Rl > 1, 
where No tending to m implies that all variables tend to m. Note that in 
this case R, > 1 follows naturally. The first three rows in Table 2 have 
now been proved. 

TABLE 2 

Limiting Values of Variables for Cases I and I1 

aAutomatically satisfied. 
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Continuing with the case Rf G 1, now suppose that R, > 1 so No 
tends to m. The differential equations for fo and m, are 

Since (y1,y2) tends to (1,0), the limiting equations are 

This is a linear system with eigenvalues given by 

hence one is always negative, and the other is positive if and only if 
Ro > 1. 

It is clear that when Ro > 1, there is one eigenvector in the first 
quadrant on which motion is away from the origin and another eigen- 
vector in the second quadrant on which motion is toward (0,O) in the 
f,m, plane. That is, the origin is a saddle point, and all trajectories in 
the first quadrant tend away from (0,O). By Thieme's extension of a 
theorem of Markus (Theorem 1.6 in Thieme [20]) with o extended to 
include m, the solutions of system (16), (17) tend to m. 

When Ro < 1, the eigenvalues are negative. By the same theorem 
(unextended), fo, m, tend to 0. 

Now consider M,. Since y, = m, /( f o  + Fo) = cfm, /[cm(m, + MI)] 
and No = (c, /cf + l)(m, + M,), it follows that 

0 < y3 < cf /em and y, tends to zero since Rf < 1. Consequently MI 
tends to 0 if No tends to 0, and M, tends to if No tends to 03. 

Clearly, Ro is the basic reproduction number that determines whether 
the infectious populations f o  and m, will die out or not. A biological 
interpretation of this expression will be given later in Section 6. 

As for case 111, Table 2 is still valid if any one of three conditions is 
met: (i) Rf > 1 or (ii) Rf = 1 and A >, C or (iii) Rf < 1 and B~ < 4AC. 
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However, if (a) Rf = 1 but A < C or (b) Rf < 1 but B' a 4AC, the 
asymptotic behavior of the population depends on the initial value of 
the population, as stated in Theorem 4. In other words, (y,,y,) could go 
to either the DFE (1,O) or an endemic equilibrium (y?, y:) depending 
on which domain of attraction the initial value is in. Hence the sub- 
groups (F,, f,, m,, M,)  also could go to (O,0, 0, O), (m, O,O,m), or (w,m,m,co) 
depending on where the population starts from initially. We summarize 
the result for cases (a) and (b) in Table 3. 

Table 3 follows directly from Table 2, except that the limiting value 
of (y , ,~ , , y , )  is placed in the first column because the value of R, 
depends on the asymptotic value of (y,,y,,y,), 

if (y1,y2,y3) +(1,0,0), 
RT = 

a / [po  + ( L O  - pO)j2] if ( Y I , Y Z ~ Y ~ )  + ( ~ 1 , 7 2 , 7 3 ) -  
(a'"0 

Here ( j , ,  jj,, 7,) could be any endemic equilibrium. R, remains the 
same as in Table 2. 

5. BIFURCATION DIAGRAMS AND NUMERICAL EXAMPLES 

Figure 1 is a bifurcation diagram that illustrates case I11 (A < 0) 
when Rf = 1. The vertical axis is y,, and the horizontal axis is C/A. 
The horizontal line y, = 0 is the DFE, which is always locally stable in 
this case. When C / A <  1, the DFE is globally asymptotically stable. 
When C/A > 1, there exists a unique endemic equilibrium with y, > 0, 
which is globally asymptotically stable. 

Figure 2 is the bifurcation diagram for case I11 when Rf < 1. The 
vertical axis is again y,, but the horizontal axis is now B 2 / 4 ~ C .  
The line y, = 0 is the DFE, which is always locally asymptotically stable. 
For B ' /~AC < 1, the DFE is also globally asymptotically stable. At 
B2/4AC = 1, the DFE becomes only locally asymptotically stable and 
there is a unique endemic equilibrium. When B , / ~ A C  > 1, it splits into 
two branches. The upper branch is locally asymptotically stable, and the 
lower branch is unstable. 

TABLE 3 

Limit Values of Variables for Cases III(a) and III(b) 
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FIG. 1. Bifurcation diagram for case I11 (A < 0) when Rf = 1. 

[ 1/01 
0- 

I 

(4.5.) 2 (4,s.) 
(4 .Z.) 

FIG. 2. Bifurcation diagram for case 111 (A < 0) when R f  < 1. 
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We now provide two numerical examples to illustrate that the above 
cases can really occur. 

Example 1. Let c, p = 1, cfP = (3.16512, a = 1, El - = 2.165, and 
- 
po - p0 = 2.165. It follows that 

C = - 2 ,  and R f = l .  

Since A < C, from Table 1 we expect DFE (1,O) to be stable with an 
asymptotically stable positive equilibrium ( y; , y: ). 

Indeed the roots of h(y) = Ay2 + By + C = 0 are 

We already know tr J < 0 for both y,, , y12. Now 

1-YII ' - 0.4140986 > 0, det J(y, ,)  = -(AY~I - C) = - 
Y l l  Y l l  

so that both eigenvalues are negative and y,, is asymptotically stable. 
det J(1) = 0 so that yl, has one negative eigenvalue and an eigen- 

value equal to 0. Hence it is stable. Note that as A approaches C from 
below, we have a bifurcation point at A = C where the endemic 
equilibrium no longer exists and DFE becomes G.A.S. in S. (See 
Theorem 4.) 

- 
Example2. Let c , P = l ,  c fp= lO,  a=1, PI- po=2.165, and Po- 
po = 2.165. Now we have 

and 

Therefore, from Table 1 we expect two positive equilibria, one 
asymptotically stable and the other unstable, in addition to the asymp- 
totically stable DFE. 

Once again solving h(y) = 0, we get 

From Theorem 4, we expect y,, to be asymptotically stable. 



We again know tr J < 0. 
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l-y11 > o ,  det J(yl l )  = 0.2825289- 
Y11 

l-y12 <o.  det J(y,,) = - 0.3290053- 
Y 12 

Hence (y,,,y,,) is asymptotically stable and is a saddle 
point, where y?j is the value of y, corresponding to yIj ( j  = 1,2). 

It is interest~ng to note that in this case an influx of some number of 
infectives could possibly result in an initial condition that would lead to 
the asymptotically stable endemic equilibrium; that is, the disease would 
become endemic even with a small Rf ( < 1). Unfortunately, without 
any detailed real data on a core group of prostitutes, we are still unable 
to determine whether these theoretical cases are feasible in the real 
world. 

6. BIOLOGICAL SIGNIFICANCE OF THE THRESHOLD 
PARAMETERS 

We now return to the original notation of po + p0 instead of po,  
Po + Po instead of Lo, and jZl + Fl instead of PI. We first note that 
the asymptotic behavior of the system is rather straightforward for 
c ,  p + p0 + po Lo + PO, that is, cases I and 11. From Table 2 we see 
that the threshold parameter Rf determines whether the endemic 
fractions will die out in cases I and 11. In case 111, bifurcation occurs if 
Rf g 1. We can rewrite A as 

The sign of A clearly depends on whether the fraction in the second 
term is greater than or less than unity. Here c ,  p is the rate at which a 
susceptible young man is infected if he makes contact with a population 
of all infected core females, and Po + Po - po - po is the removal plus 
retirement rates of these core females due to infection. Therefore if the 
former term dominates over the latter, Rf simply determines whether 
the endemic fractions will die out. On the other hand, if the 
removal/retirement of the infected core females caused by infections is 
greater than the rate at which they infect susceptible males, it results in 
an increase in the pool of susceptible core females as well as susceptible 
young men. This tends to destabilize the system, and Rf 9 1 no longer 
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guarantees that the endemic fractions will go to zero. More interest- 
ingly, in this case the relative sizes of the initial populations could 
determine whether the endemic fractions will persist. Rf,  restricted to 
be nonnegative, can be viewed as the geometric mean of the relative 
strengths of the disease transmission of the two infective groups, that is, 
m, and f,, versus their proportional dilution via AIDS-related excess 
removal rates and the increase of susceptible core female proportion a. 

The asymptotic population size is determined by R,, which measures 
simply recruitment of susceptible core females versus removal with the 
presence of disease taken into account. It is interesting to note that the 
birth rate b is absent from the expression for R,. This can be inter- 
preted as saying that the persistence of population depends not on the 
births of individuals but on the recruitment of disease-free core fe- 
males, regardless of whether the disease will persist. When the total 
population No tends to and the infective proportion y, + y ,  goes to 0, 
the basic reproduction number Ro determines whether the infective 
population goes to 0 or 03. Clearly, Ro is simply the geometric mean of 
the ratios of disease transmission to removal for infective young males 
and infective core females. Hence it is the mean number of secondary 
infections caused by one infective entering a susceptible population. 

When To + p, > c, P + po + p, (i.e., A < O), the asymptotic propor- 
tions depend on the initial values as well as the threshold parameter Rf; 
consequently R, also depends on the initial proportions. This illustrates 
the importance of Lo + pO. That is, if Lo + p, is sufficiently large (i.e., 
greater than c, p + po + p,), then even if the DFE is stable (Rf < 11, it 
will not be globally stable. Biologically, this could be interpreted as 
follows: If the effect of the disease on increasing removal rate is so 
large that F ,  + p, > p, + p, + c, p, it will have a destabilizing impact 
on the system by making the dynamics more complicated. Qualitatively, 
the asymptotic behavior of the system becomes dependent not only on 
the threshold parameters but also on the initial conditions. We also 
note that the well-posedness of system (141, (1.5) requires H3, that is, 
p1 + (TI + a > Lo + Po. Hence an increase in Lo + Po tends to destabi- 
lize the system by allowing unbounded solutions. 

Our model also enables us to study the dependence of endemic levels 
on the various parameters ( a ,  cf, cm, P ,  p,  R,, etc.) by computing the 
endemic proportions y ,  and y,  as functions of the parameters via the 
expressions for A, B, and C. However, in many cases the resulting 
analytic expressions for the endemic proportions involve the square root 
of B' -4AC and it is difficult to obtain meaningful interpretations. 
One simple case is case 11, A = 0, Rf > 1, where y, = - C/B and the 
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endemic proportion of the female sex workers is 

where G = ( 3 ,  - pO)/(a + jiO - pol. 
It is obvious that y, increases toward 1 as Rf increases. It also can 

be shown easily that y, is a decreasing function of a (note that Rf also 
depends on a). This makes sense because increasing the supply of sex 
workers a would dilute the endemic proportion. On the other hand, the 
endemic proportion for single males is 

Given that y, decreases with a, y, is also a decreasing function of 
a; that is, an increase in the supply of sex workers would decrease the 
infection level among the single males because the dilution of infection 
level in female sex workers decreases the probability that a customer 
will encounter an infected sex worker. Similar but more complicated 
expressions for other cases can also be obtained. 

An open question of interest is, What is the effect of screening 
and/or treatment in the core group as a control measure for the spread 
of disease? Some models on screening and/or treatment in the whole 
community (e.g., [I, 10, 11,211) have shown that such a control measure 
is beneficial only under certain conditions on the parameters. Would 
things be different if it were done on the core group? We will not 
pursue this question in this work. 

APPENDIX 

PROOF OF PROPOSITION 1 

The Jacobian matrix of system (14), (15) is 

At y, = 1, y ,  = 0, the matrix has 
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Under H2 and H3, the trace is negative and the determinant is 
positive if and only if Rf < 1. If H2 holds but H3 fails, so that 
L1 + a < L o ,  then the same result holds if L1 + a > po. On the other 
hand, det J < 0 if p, + a < p,, and the equilibrium is unstable. 

PROOF OF THEOREM 2 

Case I. A > 0. By H3, h(0) = C < 0. If Rf  > 1, then 

There is exactly one root in (0,l) and hence one endemic equilibrium 
(Yl7~3). 

Using the fact that at positive equilibrium we have 

the Jacobian of system (14), (15) can be put in the form 

--- Yq ( P o  - PO))'~ - C", PY I 

'=[ ( ~ + ~ I - P o )  [.+(PO-PO)YI] - ( l - ~ , ) ( c , F - ~ i ~ + w ~ ) - ( ~ i ~ + a - w ~ )  

cm PY 1 

Then 

Clearly, if Rf > 1, then tr J < 0 and det J > 0 so y, is asymptotically 
stable. 

If Rf  < 1, then h(1) 9 0 and h"(y,) = 2 A  > 0 imply that there is no 
root in (0,l). 

Case II. A = 0. A = 0 implies that c, = Po - po,  and consequently 
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If Rf > 1, then B > a(& + a - = - C, and there exists a unique 
root y, > 0 where y, = - C/B < 1. In this case, tr J < 0, det J > 0, and 
y , is again asymptotically stable. 

If Rf g 1, then B g - C and there is no root for h(y) = 0 in (0,l). 

Case III. A < 0. First denote the smallest positive root of h(y) = 0 by 
y,,. If Rf > 1, then h(1) > 0 and there is exactly one root in (0,l). 
Therefore B2 > 4AC and - B/2A > 0. First, we have 

Also A < 0, C < 0 implies B > 0 and 

- B +dB2 - ~ A C  
Y l l  = 2A < 1, 

so that 

Thus det J > 0, and y,, is once again asymptotically stable. 
If Rf = 1, then h(1) = A + B + C = 0 and there are two possibilities. 

If A - C 0, then y,, = 1 and there is no root in (0,l). However, if 
unique positive root in (0,l). In this case 

y l l = - ( A + B ) / A = C / A .  
It follows that 

Hence det J > 0 and y,, is asymptotically stable. 
If Rf  < 1, there are three possibilities, we will discuss each in turn. 

(a) B2 < 4AC, and there is no root in (0,l). 
(b) B2 = 4AC, and y, = - B/(2A) is the unique root in (0,l). 

Consequently, 

and y, is stable. 
(c) B2 > 4AC, there are two positive roots in (0,l): 
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with y,, > y,,. Moreover, 

and 

Hence y,, is asymptotically stable and y,, is unstable. 

PROOF OF PROPOSITION 3 

Clearly, S is invariant from system (141, (15). We apply the Dulac 
criterion in region S. Let f ,(y,, y,) and f3(y1, y3) denote the expres- 
sions in the right-hand sides of Equations (14) and (151, respectively. 
Let g(y,,y3)= l/y,y,. Then we find 

in S. By the Dulac criterion, there is no periodic solution in S. 

PROOF OF THEOREM 4 

Part (1) follows directly from Theorem 2 and Proposition 3. The 
same is true for part (2) when Rf > 1, or Rf = 1 and A > C, or Rf < 1 
and B2 < 4AC. 

For cases (i) and (ii) in (2), we first consider Rf < 1 and B* > 4AC. 
We let (y,,,y3,) be the endemic equilibrium with the smaller y, value 
and (yI2,y3,) be the one with the larger y, so that (y,,,y,,) is asymptot- 
ically stable while (y,,,~,,) is the saddle point. Since there is no 
periodic solution of any type in S, the stable manifold of (y12,y32) must 
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intersect the boundary of S and divides S into two regions. It follows 
then (also from Proposition 3) that the two regions must be the domains 
of attraction for (y,,,y,,) and DFE (1,0), both of which are asymptoti- 
cally stable. At (1,0), the Jacobian of (14), (15) is 

Since Rf < 1, both eigenvalues are negative. It is easy to show that 
one eigenvector has positive slope and the other has negative slope. 
Hence DFE is a node because S is an invariant rectangle and (1,O) is 
the lower right vertex of S. To show that (yl1,y3,) is also a node, we use 
the transformation x = y, - y,,, y = y, - y,,, so that system (14), (15) 
becomes 

(A2) can be rewritten as 

where A is the Jacobian of (A2) at (0,O) and 

are the nonlinear terms of (A2) in polar coordinates. It is obvious that 
fi(r, 6) = o(r )  as r += 0+ for i = 1,2. By Theorem (5.1) in Coddington 
and Levinson [7, p. 3841, an improper node of the linearized system of 
(A3) is also an improper node for (A3). Therefore it suffices to show 
that (0,O) is an improper node for the linearized system of (A3). To this 
aim we consider the eigenvalues of the matrix A in (A3). Since A < 0, 
Rf < 1, and B2 > 4AC, the two eigenvalues of A are real, distinct, and 
negative. Thus we have shown that (y,,,y,,) is an improper node and 
we have a saddle-node connection. 

As B' += 4AC, ( y l l , ~ 3 1 )  approaches (y12,y,,) so that at B2 = 4AC, 
we have a saddle-point bifurcation where (y,,, y32) becomes stable with 
its stable manifold dividing S into two regions. Again by Proposition 3, 
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every orbit in the region with (1,O) on its boundary will go to the 
asymptotically stable node at (1,0), while orbits in the other region will 
be attracted to (y , ,  , y,,). 

For the remaining case (i), R f  = 1, A < C ;  DFE is stable and the 
unique endemic equilibrium is asymptotically stable. The eigenvalues of 
the Jacobian matrix in ( A l )  are 

Let (u,,  u , ) ~  be the eigenvector of J corresponding to A,. Then we have 

Once again, since (1,O) is at the lower right vertex of the invariant 
rectangular set S,  only the eigenvector manifold corresponding to the 
zero eigenvalue is contained in S. It follows that DFE is not attracting 
for S. Hence, by Proposition 3, we deduce that the unique endemic 
equilibrium must be G.A.S. 
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