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Abstract

The primary goal of this paper is to estimate the population size for a births only model when
the capture probabilities vary with behavior response and time (or sampling occasion). A Bayesian
framework is developed from the births only models for the capture–recapture experiment. We propose
a uni�ed approach for estimating the population size on each sampling occasion for four speci�ed
models using the Gibbs sampler, a Markov chain Monte Carlo method. The proposed methodology is
illustrated with a simulation study and HIV serosurveillance data of Thailand. The results show that
Gibbs sampler provides a reasonable estimate of population size when compared with the classical
technique. c© 1999 Elsevier Science B.V. All rights reserved.

Keywords: Capture–recapture sampling; Gibbs sampler; Markov chain Monte Carlo method; Behavior
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1. Introduction

In ecological studies, the �rst problem usually encountered is the need to know
the size of various wildlife populations in our study area, and to know how these
populations change with time. In order to make more precise inferences various
capture–recapture sampling techniques have been widely used. Seber (1982) classi�ed
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population into two categories called “closed” and “open”, depending on whether the
population remains unchanged during the period of investigation, or changes through
such processes as birth, mortality, emigration, etc. Like the closed population models,
open models can vary widely in their generality, and as a result many models have
been introduced into the literature by Jolly (1965), Seber (1982), Cormack (1968,
1972), etc. The births only model proposed by Darroch (1959) and Jolly (1965) in-
vestigates the population size when additions by birth, recruitment, or immigration is
possible. In this work, we focus mainly on the births only model which allows only
births to occur during the experiment. We will consider the problem of estimating
population size for all sampling periods for a births only model when capture prob-
abilities vary with behavior response and time (or sampling occasion). This model
is called M (B)

tb , where B denotes the births only model, t denotes time variation, and
b denotes behavior response. There are three special cases of Model M (B)

tb : Model
M (B)
t , Model M (B)

b , and Model M (B)
0 . Model M (B)

t and Model M (B)
b consider the cap-

ture probabilities varying with time and behavior response, respectively. Model M (B)
0

denotes that the capture probability remains constant between all sampling periods
for a births only model. For related work in this area, see Pollock et al. (1990),
Seber (1986, 1992) and Hwang and Chao (1995).
As far as we know, there is no work on Model M (B)

b and Model M (B)
tb in the

literature, only Model M (B)
t has been studied by Darroch (1959) and Jolly (1965)

to estimate the population size for each sampling period. However, the population
size of the �rst period is unestimable. George and Robert (1992) and Lee and Chen
(1998) proposed Bayesian inferences about the population size for various mod-
els on a closed population. In this paper, we generalize the Bayesian analysis of
the above-mentioned articles to the births only model using the Gibbs sampler, a
Markov chain Monte Carlo method. We shall not repeat the details of the Gibbs
sampler which can be found elsewhere (e.g. Geman and Geman, 1994, Tanner and
Wong, 1987; Gelfand and Smith, 1990; Gelfand et al., 1990). It su�ces to say that
what we need are conditional distributions of subsets of parameters given the others.
The Gibbs sampler is iterated many times in order to obtain a sample of draws from
the posterior distribution. The empirical distribution of this sample converges weakly
to the true joint distribution. For more details of the convergence results, see Tierney
(1994). Interested readers are also referred to Casella and George (1992) and Tanner
(1994) for a general comprehensive review of the Gibbs sampler. Section 2 presents
the births only model and the setup of a Bayesian framework. In Section 3 we illus-
trate the methodology using a simulation study and the semi-annual serosurveillance
data of Thailand. We give concluding remarks in Section 4.

2. Inference for the births only model

We consider a sequence of s samples. Let tj be the time when the jth sample is
taken and let Bj be the number of new animals or subjects entering the population
between time tj and time tj+1. Assume that the Bk animals are indexed by 1; : : : ; Bk ,
for k =0; : : : ; s− 1, and P(k)ij is the capture probability of the ith animal entering the
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population between time tk and tk+1 in sample j, with i = 1; : : : ; Bk , k = 0; : : : ; s− 1,
and j= k+1; : : : ; s. We de�ne Nk be the total number animals in the population just
before time tk , and Nk = B0 · · ·+ Bk−1 in the births only model.
In this article, animals are assumed to act independently. When there exists a

behavior response e�ect, P(k)ij will depend on the capture history of this animal from
the (k + 1)th to the (j − 1)th sample, and P(k)ij can be expressed as

P(k)ij =



P(k)

′
ij if the ith animal of Bk is not caught between the (k+1)th

to the (j − 1)th sample;
b(k)

′
ij if the ith animal of Bk has been caught between the (k+1)th

to the (j − 1)th sample:
(1)

Let X (k)ij be equal to 1 if the ith animal entering the population between time tk
and tk+1 is caught in the jth sample, and equal to 0 otherwise. The capture sequence
of the ith animal entering the population between time tk and tk+1 is {X (k)ij ; j = k +
1; : : : ; s}. From (1), the probability function of X (k)ij depends on the previous capture
history of the ith animal. Hence the underlying general probability structure of the
capture–recapture experiments for a births only model is

L(B;P |D) =
s−1∏
k=0

Bk∏
i=1

s∏
j=k+1

(P(k)ij )
X (k)ij (1− P(k)ij )1−X

(k)
ij

=
s−1∏
k=0

Bk∏
i=1

s∏
j=k+1

(P(k)
′

ij )
X (k)ij I [(

∑j−1

r=k+1
X (k)ir )=0](b(k)

′
ij )

X (k)ij I [(
∑j−1

r=k+1
X (k)ir )¿0]

×(1− P(k)′ij )
(1−X (k)ij )I [(

∑j−1

r=k+1
X (k)ir )=0](1− b(k)′ij )

(1−X (k)ij )I [(
∑j−1

r=k+1
X (k)ir )¿0];

(2)

where I(:) is the usual indicator function, B=(B0; : : : ; Bs−1), P=(P
(k)
ij , i=1; : : : ; Bk ;

j = k + 1; : : : ; s; k = 0; : : : ; s− 1), and D= {X (k)ij , i = 1; : : : ; Bk ; j = k + 1; : : : ; s; k =
0; : : : ; s − 1} . There are too many parameters in the general model in (2), so the
information about Bk or Nk cannot be extracted from data. Therefore, the parameter
space of the general model in (2) must be restricted. The most common restrictions
used are P(k)ij =P or P

(k)
ij =Pj (see Jolly, 1965 or Seber, 1982) for i=1; : : : ; Bk , and

k=0; : : : ; j−1. The models are designated Model M (B)
0 or M (B)

t , respectively. If there
is behavior response for the captured animal, the respective restrictions become

P(k)ij = PjI

( j−1∑
r=k+1

X (k)ir = 0

)
+ bjI

( j−1∑
r=k+1

X (k)ir ¿ 0

)
(3)

or

P(k)ij = PI

( j−1∑
r=k+1

X (k)ir = 0

)
+ bI

( j−1∑
r=k+1

X (k)ik ¿ 0

)
; (4)
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where bj is the recapture probability in jth sample and b is the recapture probability
for any sample. We denote (3) and (4) by Model M (B)

tb and Model M (B)
b , respectively.

In this paper, we will give a uni�ed inference of population size for each sampling
period via Gibbs sampler on the above four Models: M (B)

tb , M
(B)
b M (B)

t , and M (B)
0 .

2.1. Model M (B)
tb

In this subsection, we consider the case when there are behavior response and
time variation for the capture probability. We assume that all animals in population
just before time tj which have not been caught in the �rst j − 1 samples have the
same capture probabilities Pj in the jth sample, and that the recapture probabilities
for all animals ever captured in population just before time tj in the jth sample are
bj. The explicit structure of P

(k)
ij is given in (3). Let D= {u1; : : : ; us; m2; : : : ; ms}, the

likelihood function can be obtained as a special case of (2).

L(N ;P; b |D) =



s∏
j=1

(
Nj −Mj

uj

)
Pujj (1− Pj)Nj−Mj+1




s∏
j=2

{(
Mj

mj

)
bmjj (1− bj)Mj−mj

}
; (5)

where N =(N1; : : : ; Ns), Nj=B0 + : : :+Bj−1, P=(P1; : : : ; Ps), b=(b2; : : : ; bs), Mj+1 =
u1 + · · ·+ uj is the number of distinct animals captured in the �rst j samples, and uj
and mj are the number of unmarked and marked animals captured in the jth sample,
respectively. Also m1 = 0.
The likelihood function can be expressed as the product of some binomial dis-

tributions. The conditional distributions of mj given Mj and uj given Nj − Mj are,
respectively,

mj |Mj ∼ B(bj;Mj); j = 2; : : : ; s

and

uj |Nj −Mj ∼ B(Pj; Nj −Mj); j = 1; : : : ; s:

Suppose the prior distribution of (N ;P; b) is chosen to be

�(N ;P; b) =


 s∏
j=1

�(Pj)




 s∏
j=2

�(bj)


 �(N1; : : : ; Ns):

In addition, let �(Pj) = Be(
1, 
2) and �(bj) = Be(
3; 
4), with Be(x; y) denoting a
beta distribution. It follows that the complete conditional posterior distributions are
given by

�(N |P; b;D)˙
s∏
j=1

(
Nj −Mj

uj

)
(1− Pj)Nj�(N1; : : : ; Ns); (6)
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�(P|N ; b;D) =
s∏
j=1

Be(uj + 
1; Nj −Mj+1 + 
2); (7)

�(b|N ;P;D) =
s∏
j=2

Be(mj + 
3; Mj − mj + 
4): (8)

Note that the conditional posterior of N given (P; b;D) does not depend on the
recapture probabilities b, therefore the information of N only depends on P. When
Bk = 0, k = 1; : : : ; s − 1, that is, there are no new animals entering the population
between time t2 to time ts, the births only model degenerates to a closed population
model. In this case, we have N1 = · · · = Ns, and the conditional posteriors (6)–(7)
become the same as those proposed by Lee and Chen (1998).
Let N(−j) denote the vector N with the Nj deleted. If the prior of N is constant,

then the conditional posterior probability function of Nj is

�(Nj |N(−j);P; b;D)

=

{∏s
l=1;l6=j

(
Nl−Ml
ul

)
Pull (1− Pl)Nl−Ml+1

}(
Nj−Mj
uj

)
Pujj (1− Pj)Nj−Mj+1∑Nj+1

Nj=max{Nj−1 ;Mj+1}
{∏s

l=1;l6=j
(
Nl−Ml
ul

)
Pull (1− Pl)Nl−Ml+1

}(
Nj−Mj
uj

)
Pujj (1− Pj)Nj−Mj+1

=

(
Nj−Mj
uj

)
Pujj (1− Pj)Nj−Mj+1∑Nj+1

Nj=max{Nj−1 ;Mj+1}
(
Nj−Mj
uj

)
Pujj (1− Pj)Nj−Mj+1

: (9)

Note that �(Nj |N(−j);P; b;D) is a truncated negative binomial. Since Mj+1 ≤ Nj
and Nj−1 ≤ Nj ≤ Nj+1, the right truncated and left truncated points are Nj+1 and
max{Nj−1; Mj+1}, respectively. Starting with an initial value of {N (0)

1 ; : : : ; N
(0)
s } and

given �xed (
1; 
2; 
3; 
4), we can produce a ‘Gibbs sequence’ {P(k);N (k); b(k)}; k =
0; : : : with simulated sampling from (7)–(9). Note that the initial value of {N (0)

1 ; : : : ;
N (0)
s } has to satisfy N (0)

1 ≤ · · · ≤ N (0)
s and the inference for N does not depend on

the hyper-parameters (
3; 
4).

2.2. Model M (B)
b

For Model M (B)
b , the capture probabilities of all animals may vary with behavior

response. Therefore, all animals in the population just before each capture time tj; j=
1; : : : ; s, have the same capture probabilities P in the �rst capture, and the same
recapture probabilities b after the �rst capture. Subsequently, the structure capture
probabilities P(k)ij in (1) can reduce to (4) and the likelihood function in (5) becomes

L(N ; P; b |D) =



s∏
j=1

(
Nj −Mj

uj

)
PMs+1(1− P)N•−M•−Ms+1

×



s∏
j=2

(
Mj

mj

)
 bm•(1− b)M•−m• ; (10)



34 C.W.S. Chen et al. / Computational Statistics & Data Analysis 32 (1999) 29–46

where N•=N1+ · · ·+Ns, M•=M2+ · · ·+Ms and m•=m2+ · · ·+ms. Suppose that the
prior distribution of (N ; P; b) is given by �(N ; P; b) = �(N1; : : : ; Ns)�(P)�(b), which
asserts that N , P, and b are priori independent. In addition, let �(P)=Be(
1; 
2) and
�(b) = Be(
3; 
4). Such priors lead to conditional posteriors of the forms:

�(N |P; b;D)˙



s∏
j=1

(
Nj −Mj

uj

)
 (1− P)N•�(N1; : : : ; Ns); (11)

�(P |N ; b;D) = Be(
1 +Ms+1; 
2 + N• −M• −Ms+1); (12)

�(b |N ; P;D) = Be(
3 + m•; 
4 +M• − m•): (13)

Other prior distributions can also be used. For example, if �(N1; : : : ; Ns) is constant,
then the conditional posterior of Nj given (N(−j), P; b;D) follows a truncated negative
binomial. Moreover, the left and right truncated points are max{Nj−1, Mj+1} and Nj+1.
The explicit conditional posterior of Nj is

�(Nj |N(−j); P; b;D) =

(
Nj −Mj

uj

)
Puj(1− P)Nj−Mj+1

∑Nj+1
Nj=max{Nj−1 ;Mj+1}

(
Nj −Mj

uj

)
Puj(1− P)Nj−Mj+1

: (14)

Note that the above equation is the same as (9), but we keep Pj=P on each capture
sampling time tj. Now choose (
1; 
2; 
3; 
4) and let the initial value of N be N (0) =
(N (0)

1 ; : : : ; N
(0)
s ) satisfying N

(0)
1 ≤ · · · ≤ N (0)

s , the Gibbs sequence {N (k); P(k); b(k)}; k=
1; : : : can be obtained from (12)–(14).

2.3. Model M (B)
t

Suppose all animals in the population just before time tj have the same capture
probability Pj which only depends on the capture sampling time tj; j=1; : : : ; s. This
model, Model M (B)

t , has been studied by Darroch (1959) and Jolly (1965). The
likelihood function of Model M (B)

t can be reduced to

L(N ;P |D) =



s∏
j=1

(
Nj −Mj

uj

)
Pnjj (1− Pj)Nj−nj






s∏
j=2

(
Mj

mj

)
 ; (15)

where nj=uj+mj; j=1; : : : ; s, are the total number of captured animals in sample j.
We choose the priors of (N ;P) as �(N ;P) = �(N1; : : : ; Ns)

∏s
j=1 �(Pj) and �(Pj) =

Be(
1; 
2) for j = 1; : : : ; s. As a result, the conditional posterior of N is the same as
Eq. (6) for Model M (B)

tb . Moreover, the conditional posterior of P given (N ;D) can
be reduced to

�(P |N ;D) =
s∏
j=1

Be(
1 + nj; 
2 + Nj − nj):

Therefore, given (N1; : : : ; Ns) and D, we can simulate P using the above result.
When we choose �(N1; : : : ; Ns) to be constant, the conditional posterior distribution
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of Nj given (N(−j); P;D) also is a truncated negative binomial and the form of this
conditional posterior is the same as in (9). Moreover, we can simulate the Gibbs
sequence {N (k);P(k)}; k=1; : : : for the given initial value N (0) which have the same
constraints as in Model M (B)

tb and M (B)
b .

2.4. Model M (B)
0

In this subsection, we consider M (B)
0 , a special case of M (B)

t . Suppose all animals in
the population just before each sampling time tj; j= 1; : : : ; s, have the same capture
probabilities P. The capture probabilities P(B)ij is constant for k=0; : : : ; s−1; j= k+
1; : : : ; s, and i = 1; : : : ; Bk . The likelihood function in Eq. (15) can be rewritten as

L(N ; P |D) =



s∏
j=1

(
Nj −Mj

uj

)




s∏
j=2

(
Mj

mj

)
Pn•(1− P)N•−n• ;

where n•= n1 + · · ·+ ns and N• is as de�ned in Section 2.2. When the priors (N ; P)
are chosen as �(N ; P) = �(N1; : : : ; Ns)�(P), the conditional posteriors are

�(N |P;D) =
s∏
j=1

(
Nj −Mj

uj

)
(1− P)N•�(N1; : : : ; Ns)

and

�(P |N ;D)˙
s∏
j=1

Pn•(1− P)(N•−n•)�(P):

The above conditional posterior distribution of N given (P;D) is the same as the
conditional posterior of N for Model M (B)

b , while the conditional posterior distribution
of P is di�erent for Model M (B)

b and Model M (B)
0 . The above result depends on the

total number of captured animals from all samplings. Let �(P) = Be(
1; 
2), the
conditional posterior, then �(P |N ;D) becomes

�(P |N ;D) = Be(
1 + n•; 
2 + N• − n•):
Therefore, P can be generated easily. Moreover, if we choose a constant prior for
N , the conditional posterior distribution of Nj can be obtained which is the same as
the conditional posterior of Nj in Model M

(B)
b .

3. Illustrative examples

3.1. Simulation study

In this section, we carried out a simulation study to investigate the performance of
the proposed inference procedure. We choose the number of new animals entering
population as (B0; : : : ; Bs−1)=(300; 100; 100; 100; 100) where s=5. Let the �rst capture
probability of animals of the jth sample be Pj and let � be the behavior response
factor. We de�ne the recapture probability bj=�Pj, where �¿ 1 denotes trap-happy,
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�¡ 1 denotes trap-shy, and �=1 if there is no behavior response e�ect. We consider
the following combinations:
1. Three levels of �: 0.8, 1, and 1.5.
2. Two levels of (P1; : : : ; P5): (1) (0.2,0.2,0.2,0.2,0.2) (2) (0.3,0.2,0.1,0.15,0.25).
3. Four choices of prior distributions: (1) Beta(0.5,0.5), (2) Beta(10,40), (3)

Beta(5,45), (4) Beta(15,35).
We apply the Bayesian approach to our simulation. For each data set, we develop

inference for (N1; : : : ; N5) via the proposed method for Models M
(B)
0 , M (B)

t , M (B)
b , and

M (B)
tb , respectively. For comparison, we calculate the maximum likelihood estimates

of Nj, j = 2; : : : ; s for Model M
(B)
t . Note that the ML estimators of population size

for Models M (B)
0 , M (B)

b , and M (B)
tb do not have explicit forms in the literature. The

estimators proposed by Jolly (1965) have the closed form

N̂ j =
njMj

mj
; j = 2; : : : ; s:

We refer to this method as “Jolly’s method” hereinafter. The hyper-parameters used
are (
3; 
4)=(3:0; 3:0) and 4 speci�cations for (
1; 
2). The choice (
1; 
2)=(0:5; 0:5)
can be motivated as a noninformative prior.
For each data set, the Gibbs sampler is run for 2500 iterations but we use every 5th

of the last 1500 iterations for making inference. One hundred data sets are generated
for each combination and analyzed for each of the four models and Jolly’s method.
For each data set, we calculate the median, mean, standard deviation, and the 95%
Bayesian intervals. Due to limited space, the results for (
1; 
2)= (5; 45); (15; 35) are
omitted. Tables 1–12 list the averages of median, mean, and the standard deviation
of 100 trials, the actual coverage probabilities of the 95% Bayesian intervals (the
fraction of these intervals that contain the true parameter values), and the coverage
probabilities for Jolly’s method. A 95% con�dence interval on the Nj for Jolly’s
method is

(N̂ j − Z0:025 se(N̂ j); N̂ j + Z0:025 se(N̂ j)); (16)

where se(N̂ j) = (N̂ j − nj)(N̂ j −Mj)=mj, and Z0:025 denotes the upper 2.5 percentage
point of the standard normal distribution. Therefore, the coverage probabilities for
Jolly’s method are the fraction of intervals in (16) that contain the true parameter
values. The true models for all tables are listed as follows:

True model M (B)
0 M (B)

b M (B)
t M (B)

tb

Trap-happy Tray-shy Trap-happy Tray-shy
�¿ 1 �¡ 1 �¿ 1 �¡ 1

Tables 1–2 3–4 5–6 7–8 9–10 11–12

The simulation results show that when the true models are either Model M (B)
0

or Model M (B)
t , the estimates for Model M (B)

t with noninformative priors have the
smallest biases among all other estimates. Moreover, all of the coverage probabilities
for Model M (B)

t are above 80%. While N1 is not estimable using Jolly’s (1965)
method, the estimates of N1 for M

(B)
0 or M (B)

t perform the best in the sense of less
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Table 1
Simulation results for 100 runs and the true model is M (B)

0 ; (P1; P2; P3; P4; P5)= (0:2; 0:2; 0:2; 0:2; 0:2),
the prior is Beta(0.5,0.5)

�= 1 M (B)
0 M (B)

t M (B)
b M (B)

tb Jolly

N1 = 300 Med 309.9 233.2 873.7 348.9 –
Mean(Std) 310.9(24.0) 233.0(93.5) 861.2(138.8) 386.7(213.7) –
Coverage 0.740 0.950 0.030 1.000 –

N2 = 400 Med 418.0 401.5 1075.6 676.9 –
Mean(Std) 419.0(26.2) 402.1(47.3) 1060.5(157.3) 694.7(249.5) 399.7(98.7)
Coverage 0.670 0.900 0.020 0.890 0.860

N3 = 500 Med 518.0 513.7 1247.1 994.0 –
Mean(Std) 519.2(28.1) 514.2(39.4) 1227.4(170.0) 987.8(255.6) 500.9(77.7)
Coverage 0.670 0.890 0.020 0.490 0.920

N4 = 600 Med 613.3 613.0 1403.2 1308.0 –
Mean(Std) 614.3(29.9) 614.1(38.3) 1376.8(179.2) 1278.7(239.5) 589.2(67.5)
Coverage 0.800 0.830 0.020 0.090 0.920

N5 = 700 Med 722.3 735.3 1586.6 1620.6 –
Mean(Std) 723.6(33.6) 739.4(48.1) 1547.8(181.8) 1570.6(187.3) 698.5(65.1)
Coverage 0.800 0.820 0.030 0.030 0.960

Table 2
Simulation results for 100 runs and the true model is M (B)

0 ; (P1; P2; P3; P4; P5) = (0:2; 0:2; 0:2; 0:2; 0:2),
the prior is Beta(10,40)

�= 1. M (B)
0 M (B)

t M (B)
b M (B)

tb Jolly

N1 = 300 Med 309.1 301.7 416.8 305.4 –
Mean(std) 309.7(22.9) 302.8(48.3) 431.9(102.3) 308.0(52.6) –
Coverage 0.790 1.000 0.750 1.000 –

N2 = 400 Med 409.1 406.7 534.4 419.3 –
Mean(std) 410.0(25.3) 407.5(39.5) 551.6(117.9) 422.6(54.9) 379.0(89.7)
Coverage 0.750 0.930 0.810 1.000 0.850

N3 = 500 Med 513.1 512.7 651.5 531.5 –
Mean(std) 514.0(26.8) 513.3(35.5) 670.4(129.5) 535.8(62.0) 505.6(79.2)
Coverage 0.780 0.870 0.760 1.000 0.930

N4 = 600 Med 610.2 610.1 760.6 653.5 –
Mean(std) 611.3(28.4) 611.2(34.7) 781.6(140.8) 661.2(79.2) 590.2(67.3)
Coverage 0.820 0.880 0.760 1.000 0.910

N5 = 700 Med 718.6 727.6 885.0 820.4 –
Mean(std) 720.0(32.0) 731.0(43.3) 909.1(156.6) 842.6(133.4) 693.6(63.6)
Coverage 0.800 0.850 0.780 0.930 0.920

bias when the true models are either Model M (B)
0 or Model M (B)

t . Moreover, the
estimates for Model M (B)

t with noninformative priors have smaller biases than that
of Jolly’s method. Inferences obtained from Model M (B)

t are not sensitive to the
priors selected. When the prior mean of Pj, 
1=(
1 + 
2), is approximately equal
to �P =

∑
Pj=t, the estimates obtained from Model M (B)

tb have the smallest biases
among others and coverage probabilities are above 80% when the true models are
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Table 3
Simulation results for 100 runs and the true model is M (B)

b ; (P1; P2; P3; P4; P5) = (0:2; 0:2; 0:2; 0:2; 0:2),
the prior is Beta(0.5,0.5)

�= 1:5 M (B)
0 M (B)

t M (B)
b M (B)

tb Jolly

N1 = 300 Med 206.6 177.2 876.2 368.8 –
Mean(Std) 207.0(13.9) 177.8(64.6) 863.9(139.5) 408.2(220.9) –
Coverage 0.000 0.480 0.010 1.000 –

N2 = 400 Med 297.2 296.7 1080.9 706.7 –
Mean(Std) 297.8(15.4) 297.8(30.0) 1062.3(157.8) 719.8(250.0) 282.9(50.0)
Coverage 0.000 0.150 0.020 0.900 0.350

N3 = 500 Med 384.8 384.6 1242.5 1016.5 –
Mean(Std) 385.3(16.2) 385.4(24.7) 1220.5(170.9) 1008.6(251.6) 374.5(41.5)
Coverage 0.010 0.040 0.030 0.380 0.230

N4 = 600 Med 474.1 473.1 1401.3 1321.8 –
Mean(Std) 474.8(17.2) 473.8(23.1) 1374.2(180.1) 1293.3(231.9) 461.0(37.1)
Coverage 0.000 0.000 0.020 0.090 0.120

N5 = 700 Med 570.6 573.4 1588.2 1622.9 –
Mean(Std) 571.3(18.6) 575.2(26.1) 1546.7(183.2) 1575.6(183.3) 559.2(36.3)
Coverage 0.000 0.060 0.020 0.030 0.050

Table 4
Simulation results for 100 runs and the true model is M (B)

b ; (P1; P2; P3; P4; P5) = (0:2; 0:2; 0:2; 0:2; 0:2),
the prior is Beta(10,40)

�= 1:5 M (B)
0 M (B)

t M (B)
b M (B)

tb Jolly

N1 = 300 Med 210.9 274.1 413.2 305.6 –
Mean(std) 211.5(14.1) 273.1(35.2) 425.7(98.2) 308.3(52.8) –
Coverage 0.020 0.950 0.800 1.000 –

N2 = 400 Med 299.4 341.0 533.0 421.0 –
Mean(std) 299.8(15.5) 341.0(26.9) 547.6(112.9) 423.7(55.5) 285.8(51.2)
Coverage 0.010 0.420 0.790 1.000 0.440

N3 = 500 Med 390.6 409.1 646.3 532.5 –
Mean(std) 391.2(16.5) 409.8(24.0) 662.9(123.7) 536.6(62.4) 367.7(39.4)
Coverage 0.000 0.110 0.780 1.000 0.160

N4 = 600 Med 485.5 497.6 760.9 653.8 –
Mean(std) 486.0(17.2) 498.2(22.8) 779.5(134.4) 662.1(78.0) 469.9(38.1)
Coverage 0.020 0.070 0.680 0.990 0.150

N5 = 700 Med 571.1 582.8 872.2 813.1 –
Mean(std) 571.8(18.2) 584.4(25.1) 891.8(148.7) 834.5(129.9) 552.2(34.9)
Coverage 0.000 0.090 0.750 0.960 0.030

either Models M (B)
tb or M (B)

b . Therefore, the estimator associated with Model M (B)
tb

behaves nicely when we are able to have more information about the priors. When
there exists a behavior response, the inferences obtained from Models M (B)

tb and M (B)
b

have a sensitive dependence upon the hyper-parameters of the prior distribution of the
capture probabilities. Hence, the inferences obtained from behavior response models
(M (B)

tb or M (B)
b ) associated with the noninformative prior, i.e. (
1, 
2) = (0:5; 0:5);
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Table 5
Simulation results for 100 runs and the true model is M (B)

b ; (P1; P2; P3; P4; P5) = (0:2; 0:2; 0:2; 0:2; 0:2),
the prior is Beta(0:5; 0:5)

�= 0:8 M (B)
0 M (B)

t M (B)
b M (B)

tb Jolly

N1 = 300 Med 391.1 276.1 887.5 360.1 –
Mean(Std) 392.3(32.0) 277.0(115.0) 874.0(139.4) 399.5(220.0) –
Coverage 0.250 0.990 0.010 1.000 –

N2 = 400 Med 506.1 480.2 1084.2 690.2 –
Mean(Std) 507.5(35.3) 480.9(60.7) 1066.8(156.9) 705.8(253.8) 486.6(142.2)
Coverage 0.190 0.660 0.020 0.880 0.980

N3 = 500 Med 617.7 607.7 1256.6 1004.1 –
Mean(Std) 619.1(38.0) 608.7(51.3) 1234.2(169.4) 996.1(256.9) 595.0(109.7)
Coverage 0.160 0.460 0.020 0.470 1.000

N4 = 600 Med 724.3 724.4 1414.5 1317.4 –
Mean(Std) 725.7(40.0) 726.7(50.3) 1387.8(178.2) 1287.5(234.8) 704.5(97.2)
Coverage 0.170 0.250 0.010 0.080 0.970

N5 = 700 Med 835.4 856.1 1589.0 1624.7 –
Mean(Std) 837.6(45.2) 861.9(64.3) 1549.1(181.0) 1578.3(181.9) 788.1(86.1)
Coverage 0.150 0.210 0.020 0.010 0.890

Table 6
Simulation results for 100 runs and the true model is M (B)

b ; (P1; P2; P3; P4; P5) = (0:2; 0:2; 0:2; 0:2; 0:2),
the prior is Beta(10; 40)

�= 0:8 M (B)
0 M (B)

t M (B)
b M (B)

tb Jolly

N1 = 300 Med 381.8 317.1 418.3 306.8 –
Mean(Std) 383.0(30.4) 319.1(55.9) 431.8(100.8) 309.6(52.7) –
Coverage 0.310 1.000 0.770 1.000 –

N2 = 400 Med 491.4 450.7 532.4 420.5 –
Mean(Std) 492.4(32.8) 451.9(47.3) 548.6(115.2) 423.3(55.2) 480.7(140.5)
Coverage 0.250 0.770 0.790 1.000 0.970

N3 = 500 Med 601.2 571.3 647.7 532.0 –
Mean(Std) 602.7(35.3) 572.6(43.6) 665.6(127.1) 536.5(62.8) 583.6(105.4)
Coverage 0.190 0.540 0.780 1.000 1.000

N4 = 600 Med 704.4 682.7 756.1 652.6 –
Mean(Std) 705.7(37.9) 684.7(45.0) 775.9(138.4) 661.2(79.8) 669.2(88.4)
Coverage 0.240 0.520 0.790 1.000 0.970

N5 = 700 Med 824.0 833.2 882.2 822.1 –
Mean(Std) 826.2(43.5) 838.3(59.9) 905.1(154.2) 845.3(135.7) 805.1(89.7)
Coverage 0.220 0.250 0.710 0.970 0.910

behave poorly. Therefore, the noninformative priors are appropriate for estimating
population size for Model M (B)

0 and Model M (B)
t . We do not recommend using the

inferences obtained from Models M (B)
tb and M (B)

b associated with the noninformative
priors when there exists a behavior response in the sampling experiment. When the
prior mean of Pj is approximately equal to �P and �¿ 1 (trap happy), Jolly’s method
has a larger bias and a lower coverage probability than that of the Bayesian approach
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Table 7
Simulation results for 100 runs and the true model is M (B)

t ; (P1; P2; P3; P4; P5)=(0:3; 0:2; 0:1; 0:15; 0:25),
the prior is Beta(0:5; 0:5)

�= 1:0 M (B)
0 M (B)

t M (B)
b M (B)

tb Jolly

N1 = 300 Med 383.2 239.8 225.3 403.3 –
Mean(std) 383.6(18.2) 241.9(87.6) 226.0(44.0) 438.8(219.0) –
Coverage 0.030 0.960 0.190 0.990 –

N2 = 400 Med 402.7 401.4 257.5 723.8 –
Mean(std) 403.1(18.0) 402.3(41.3) 259.4(36.0) 732.8(245.6) 387.8(73.8)
Coverage 0.700 0.880 0.060 0.810 0.860

N3 = 500 Med 418.4 506.4 273.5 1008.8 –
Mean(std) 419.1(18.9) 507.5(41.3) 276.6(34.1) 999.8(246.8) 487.1(96.6)
Coverage 0.120 0.940 0.070 0.460 0.910

N4 = 600 Med 521.9 603.7 364.8 1301.3 –
Mean(std) 523.0(25.7) 605.1(40.7) 367.6(41.4) 1269.5(238.9) 587.7(85.0)
Coverage 0.280 0.930 0.060 0.140 0.850

N5 = 700 Med 850.6 724.4 567.4 1606.0 –
Mean(std) 852.2(41.7) 727.6(45.3) 571.3(71.8) 1554.0(198.9) 690.0(60.5)
Coverage 0.090 0.810 0.160 0.040 0.870

Table 8
Simulation results for 100 runs and the true model is M (B)

t ; (P1; P2; P3; P4; P5)=(0:3; 0:2; 0:1; 0:15; 0:25),
the prior is Beta(10; 40)

�= 1:0 M (B)
0 M (B)

t M (B)
b M (B)

tb Jolly

N1 = 300 Med 386.3 359.6 307.0 348.2 –
Mean(std) 386.9(17.6) 358.7(39.0) 310.4(36.9) 349.3(40.9) –
Coverage 0.040 0.870 0.990 0.940 –

N2 = 400 Med 405.1 420.4 325.2 403.4 –
Mean(std) 405.7(17.4) 420.8(32.1) 329.1(36.4) 406.2(41.4) 389.0(73.2)
Coverage 0.710 0.920 0.490 1.000 0.890

N3 = 500 Med 421.5 490.7 339.9 456.4 –
Mean(std) 422.1(18.4) 491.7(34.4) 343.9(37.2) 460.7(50.0) 520.7(108.2)
Coverage 0.170 0.930 0.160 1.000 0.960

N4 = 600 Med 522.9 583.9 440.0 575.0 –
Mean(std) 524.0(25.0) 585.6(38.3) 444.1(40.9) 586.0(82.6) 576.8(80.5)
Coverage 0.280 0.860 0.160 1.000 0.870

N5 = 700 Med 844.6 724.8 698.6 903.9 –
Mean(std) 846.4(40.2) 727.7(43.1) 705.7(70.6) 931.7(168.9) 683.0(58.7)
Coverage 0.140 0.760 0.900 0.650 0.880

(see Tables 4 and 10). In contrast, when the prior mean of Pj is approximately
equal to �P and �¡ 1 (trap shy), the estimate of population size for Jolly’s method
severely overestimates the true population size for each sampling period and with a
high coverage probability due to the large variations (see Tables 6 and 12).
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Table 9
Simulation results for 100 runs and the true model is M (B)

tb ; (P1; P2; P3; P4; P5)=(0:3; 0:2; 0:1; 0:15; 0:25),
the prior is Beta(0:5; 0:5)

�= 1:5 M (B)
0 M (B)

t M (B)
b M (B)

tb Jolly

N1 = 300 Med 278.9 192.8 224.9 391.5 –
Mean(std) 279.0(11.3) 194.0(58.5) 227.8(42.5) 430.2(222.1) –
Coverage 0.480 0.530 0.290 1.000 –

N2 = 400 Med 297.1 302.3 253.4 717.0 –
Mean(std) 297.3(10.6) 303.5(26.5) 257.5(35.5) 726.8(252.0) 286.8(39.9)
Coverage 0.000 0.200 0.070 0.870 0.300

N3 = 500 Med 311.5 398.5 270.6 1014.2 –
Mean(std) 311.8(11.1) 398.7(27.1) 275.8(33.5) 1001.2(247.5) 396.8(62.2)
Coverage 0.000 0.050 0.050 0.450 0.550

N4 = 600 Med 406.5 466.0 359.6 1305.7 –
Mean(std) 407.1(15.1) 466.5(25.4) 364.5(40.3) 1277.3(230.8) 448.8(46.8)
Coverage 0.000 0.000 0.030 0.080 0.140

N5 = 700 Med 656.6 553.3 566.8 1610.8 –
Mean(std) 657.5(24.4) 554.7(23.4) 575.0(71.5) 1564.2(187.2) 540.4(32.4)
Coverage 0.520 0.010 0.290 0.000 0.010

Table 10
Simulation results for 100 runs and the true model is M (B)

tb ; (P1; P2; P3; P4; P5)=(0:3; 0:2; 0:1; 0:15; 0:25),
the prior is Beta(10; 40)

�= 1:5 M (B)
0 M (B)

t M (B)
b M (B)

tb Jolly

N1 = 300 Med 288.0 312.1 311.6 346.8 –
Mean(std) 288.1(11.5) 311.2(27.1) 315.0(38.6) 347.8(40.6) –
Coverage 0.570 0.970 0.970 0.940 –

N2 = 400 Med 307.0 350.6 330.1 402.5 –
Mean(std) 307.2(10.7) 351.0(23.0) 334.3(38.3) 405.1(41.1) 291.8(40.4)
Coverage 0.020 0.420 0.520 1.000 0.260

N3 = 500 Med 321.2 406.0 344.9 456.1 –
Mean(std) 321.5(11.3) 406.8(24.5) 349.4(39.2) 460.1(49.8) 396.3(60.4)
Coverage 0.000 0.060 0.160 1.000 0.500

N4 = 600 Med 421.0 482.2 447.8 577.1 –
Mean(std) 421.6(15.6) 483.1(26.3) 452.6(43.7) 588.6(83.9) 457.9(47.5)
Coverage 0.000 0.040 0.240 1.000 0.220

N5 = 700 Med 669.9 587.9 716.4 913.7 –
Mean(std) 670.9(24.8) 589.4(25.7) 724.7(75.8) 942.1(172.4) 549.7(33.1)
Coverage 0.630 0.110 0.930 0.670 0.010

3.2. Real example: HIV serosurveillance data

In this subsection, we estimate the numbers of intravenous drug users (IVDU’s)
in Thailand infected with human immunode�ciency virus (HIV) who have not pro-
gressed to AIDS from the semi-annual HIV serosurveillance data of Thailand from
June 1991 to June 1993. The nation-wide serosurveillance date is published by
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Table 11
Simulation results for 100 runs and the true model is M (B)

tb ; (P1; P2; P3; P4; P5)=(0:3; 0:2; 0:1; 0:15; 0:25);
the prior is Beta(0.5,0.5)

�= 0:8 M (B)
0 M (B)

t M (B)
b M (B)

tb Jolly

N1 = 300 Med 470:0 292:6 238:2 378:3 –
Mean(std) 470:7(25:0) 293:2(111:5) 240:4(45:6) 418:9(222:1) –
Coverage 0:000 1:000 0:290 1:000 –

N2 = 400 Med 492:8 486:9 270:6 709:2 –
Mean(std) 493:6(25:2) 487:8(56:6) 274:5(38:0) 720:2(251:8) 467:8(105:9)
Coverage 0:070 0:690 0:140 0:890 1:000

N3 = 500 Med 512:5 614:8 287:6 1006:0 –
Mean(std) 513:1(26:4) 615:9(53:9) 292:5(36:4) 995:4(251:0) 616:8(152:0)
Coverage 0:780 0:460 0:080 0:430 1:000

N4 = 600 Med 619:6 721:5 379:9 1302:8 –
Mean(std) 621:4(34:6) 723:6(54:2) 384:7(43:5) 1271:3(237:5) 695:8(119:3)
Coverage 0:730 0:380 0:070 0:090 0:990

N5 = 700 Med 1019:1 859:2 588:4 1610:2 –
Mean(std) 1022:1(58:2) 863:8(63:3) 595:1(73:9) 1561:0(194:7) 800:6(83:7)
Coverage 0:000 0:240 0:280 0:030 0:860

Table 12
Simulation results for 100 runs and the true model is M (B)

tb ; (P1; P2; P3; P4; P5)=(0:3; 0:2; 0:1; 0:15; 0:25);
the prior is Beta(10,40)

�= 0:8 M (B)
0 M (B)

t M (B)
b M (B)

tb Jolly

N1 = 300 Med 457:0 378:4 311:8 340:5 –
Mean(std) 457:7(23:7) 377:4(48:0) 315:7(40:8) 341:5(40:3) –
Coverage 0:000 0:830 0:990 0:990 –

N2 = 400 Med 479:3 460:1 331:4 397:0 –
Mean(std) 480:0(23:7) 460:9(39:1) 336:0(40:4) 399:5(40:6) 478:9(113:0)
Coverage 0:130 0:680 0:520 1:000 0:990

N3 = 500 Med 498:4 543:2 346:4 450:4 –
Mean(std) 499:1(24:8) 544:1(43:0) 351:4(41:5) 454:4(49:6) 595:7(143:6)
Coverage 0:720 0:870 0:200 0:990 1:000

N4 = 600 Med 604:9 658:9 446:6 570:2 –
Mean(std) 606:2(33:0) 661:4(50:5) 452:2(45:8) 581:2(82:5) 669:4(111:7)
Coverage 0:790 0:770 0:220 1:000 0:980

N5 = 700 Med 1002:6 841:5 724:9 910:1 –
Mean(std) 1005:0(55:3) 846:2(61:1) 734:5(81:1) 938:4(173:6) 805:0(85:2)
Coverage 0:000 0:240 0:980 0:690 0:870

Division of Epidemiology, Ministry of Public Health (MOPH) of Thailand. The
data for IVDU’s used in this example is listed in Table 13.
The population size to be estimated is the number of HIV-infecteds within the

IVDU’s population. We assume no natural deaths between the samples, as the pop-
ulation of IVDU’s consists of young adults with low mortalities. Moreover, the
sampling period is two and half years. Due to the long incubation period of HIV, it
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Table 13
The sampling period and HIV-infected ratio

Sampling period June 91 December 91 June 92 December 92 June 93

IVDU’s sample ei 2933 2383 2668 2686 3515
HIV-infected ui 931 912 952 1039 1234

Ratio (%) 38.41 31.74 38.27 38.68 35.11

is reasonable that we can assume no deaths during the sampling period. The births
only model with no recapture is the model to work with. For more detail, those who
test positive will not be tested again, so that there is no recapture and we have a
special case of the births only model. During ith sampling period, i = 1; 2; : : : ; 5, let
the IVDU’s sample and HIV-infected be denoted ei and ui, respectively. u1; : : : ; u5
are available rather than m1; : : : ; m5. We can estimate the number of HIV-infected
IVDU’s by using either Model M (B)

b or Model M (B)
tb . In the simulation study, it shows

that if we have information about the prior distributions then the estimators asso-
ciated with Model M (B)

tb perform better than M (B)
b . Moreover, the observed “capture

probability” in each sampling period is not the same. We decide to estimate the
population size of HIV-infected by using Model M (B)

tb .
In the following procedure, we will utilize the prior information, Pj, from Mastro

et al. (1994) and Weniger et al. (1991). Mastro et al. (1994) estimated the number of
HIV-infected IVDU’s in Bangkok to be approximately 12,000 by using two sets of
data on IVDU’s in Bangkok to obtain an estimated number of IVDU’s in Bangkok
of 32,574. Weniger et al. (1991) reported that in �scal year 1989 there were 60,323
admissions for treatment at 138 registered heroin=opiate detoxi�cation centers in
Thailand, out of which 27,056 admissions are in Bangkok. Assuming that the number
of IVDU’s in Bangkok maintain roughly the same proportion when compared with
the nation-wide total in 1991, we obtain an estimate of IVDU’s in Thailand of
72,626. Suppose that 72,626 is also the nation-wide total in June 1991. As all of
the ratios of ui and ei are approximately constant, we can assume that the prior
of the capture probability for the IVDU’s population is the same as the prior of the
capture probability for HIV-infected within the IVDU’s population. Therefore, the
prior of Pj can be obtained from the information of ei and the nation-wide total in
June 1991 for the number of IVDU’s. If Pj follows Beta(
1; 
2), then its mean and
coe�cient of variation are 
1=(
1 + 
2) and

√

2=(
1(
1 + 
2 + 1)), respectively. The

estimates of 
1=(
1 + 
2) and
√

2=(
1(
1 + 
2 + 1)) are


1
(
1 + 
2)

∼=0:04
(
=

e1
72626

)
(17)

and


2

1(
1 + 
2 + 1)

=

∑5
j=1(ej − �e)2=5

�e2
∼=0:018; (18)

where �e is the mean of ei. We can solve (
1; 
2) from equations (17) and(18) which
are (53.29,1279.04). Notice that in the Gibbs sampler we divided the numbers by 20
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Table 14
Bayesian estimates of the number of HIV-infected IVDU’s in Thailand

Date Median Mean Std 95% Bayesian interval

June 1991 19,831 19,726 1325 (16,917–22,333)
December 1991 22,884 22,837 1048 (20,794–24,784)
June 1992 25,758 25,808 1097 (23,632–27,736)
December 1992 28,911 28,873 1073 (26,911–30,843)
June 1993 32,171 32,140 845 (30,430–33,552)

to draw the Gibbs sequence from the conditional posteriors. The posterior median,
posterior mean, and 95% Bayesian intervals are listed in Table 14. These Bayes
estimates are based on Monte Carlo samples from the Gibbs sampler run of 5000
iterations after 3500 burn-in, and selecting every 5th sampled value.
It is assumed that no natural deaths occurred in the births only model. This as-

sumption is plausible when the time span of the samples is short. For a comparison,
we applied the same proportion of IVDU’s in Bangkok (Weniger et al., 1991) to
obtain the estimates of HIV-infected IVDV’s in Bangkok. We obtain an estimate of
10; 264 HIV-infected IVDU’s in Bangkok by using the posterior median in December
1991 which is slightly less than 12; 000 obtained by Mastro et al. (1994).

4. Concluding remarks

In this paper, we propose a uni�ed approach for estimating the population size at
each sampling period for Models M (B)

0 , M (B)
t , M (B)

b , and M (B)
tb . The population size

at the �rst sampling period N1 is unestimable using traditional maximum likelihood
estimation for Model M (B)

t . There also exists an unidenti�ability problem if the in-
formation of the �rst capture is employed to estimate the population size for Model
M (B)
tb . The Bayesian approach enables us to estimate more parameters than obser-

vations at hand (see Lee and Chen, 1998). Therefore, the unidenti�ability problem
can be resolved for Model M (B)

tb using the proposed Bayesian approach. The main
advantage of using the proposed procedure is that we are able to estimate N1 via
prior information for the four models. The results obtained in simulation study shows
that the Gibbs sampler o�ers reasonable inferences for population size in general.
Inferences obtained from behavior response models such as Model M (B)

b or Model
M (B)
tb have a sensitive dependence on the hyper-parameters of the prior distribution

of the capture probabilities. However, the inference performs satisfactorily when we
make an appropriate choice of hyper-parameters of the prior distribution.
Model selection is an important issue in the estimation of population size which

is beyond the scope of this paper and shall be considered in subsequent work. The
results of this paper can be used to estimate the population size on a closed population
under the simplifying condition B1=· · ·=Bs−1=0. Hsieh et al. (1999) further extends
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the proposed method to a generalized removal model which allows for recruitment
and deaths to occur during the experiment. Our inference for Model M (B)

t generalizes
the results of George and Robert (1992). Moreover, the inference for Model M (B)

b

and Model M (B)
tb generalizes the results of Lee and Chen (1998). Finally, the results

of the proposed approach also can be generalized to analyze censor or truncated data
sets.
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