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Abstract. A general model is considered for treatment and behaviour change of the

Human Immunodeficiency Virus (HIV) infecteds in a highly sexually active core group of

female commercial sex workers (CSW’s) and a ”bridge population” of young unpartnered

males. In this model, the spread of HIV/AIDS in the community is carried out mainly

through the sexual interaction between the core group and the bridge population which

acts as a bridge for the spread of disease to the general population. We will consider the

effect of treatment of the infecteds and/or the subsequent behaviour change when targeted

toward the core group and the bridge population. Analytical results will be given for a

strategy which targets treatment and behaviour change at either the core group or the bridge

population. Numerical examples are also provided to illustrate the biological significance of

the treatment/behaviour change and its effect on the threshold parameter values. The results

show that if the contact rates and transmission probabilities of the treated individuals are

sufficiently reduced, the treatment/behaviour change can eradicate the disease provided that

the level of treatment in the infected population is sufficiently high. However, an ill-planned

treatment program which fails to meet the required reductions in contact rate or transmission

probability could have a detrimental effect on the spread of the epidemic.
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1 Introduction

The spread of Human Immunodeficiency Virus/Acquired Immunodeficiency Syndrome (HIV/AIDS)

in Asia, emerging only in the late 1980’s, is relatively recent when compared with the spread

of the epidemic in Africa, Western Europe, and North America. However, the scale of the

rapidly spreading AIDS epidemic in Thailand, Myanmar, India, and other Asian countries

reported in recent years (see e.g., [1]) has been alarming and has prompted many rather

grim predictions. For example, Chin [2] used the EPIMODEL ([3]) with various ”HIV sce-

narios” to project future spread of HIV in the world. The result points to projections that,

by the year 2000, the number of new HIV infections in Asia may reach its peak, exceeding

those of rest of the world combined, before tailing off. Among these Asian countries, the

spread of HIV in Thailand has been most explosive and most well-documented. (See e.g.

[4].) The key ingredients to the epidemic in Thailand are a ”core group” of highly sexually

active individuals (the female commercial sex workers, or CSW’s, see e.g. [5]) which spreads

the disease, and a ”bridge population” (unpartnered young men, low-income male brothel

visitors, and truck drivers) which provide a bridge for transmissions of HIV/AIDS between

the core group and the general population of noncore females and their offsprings [6]. For

theoretical studies of India, one may also add the professional blood donors to this group.

While the important role of a core group such as CSW’s in the transmission of sexually trans-

mitted disease (STD) has been well-known (see e.g. [7]), the bridge population is somewhat

a unique feature of developing countries like Thailand which needs further study. In recent

years, the Thai government has been one of the most aggressive governments in the world

in the fight against AIDS. AIDS prevention measures used in Thailand include establishing

a Sentinel surveillance system to keep track of the new trends in the spread of HIV/AIDS,

implementing comprehensive programs to increase AIDS awareness in the general public,

and encouraging use of safe sex in commercial sex establishments via the ”100% Condom

Program” (see [8]) implemented in 1991 for distribution and promotion of condom use in

sexual contacts, even with sanctions against those establishments with record of noncompli-

ance. These measures seems to have taken effect. One evidence is the sharp drop in the STD
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level reported at government STD clinics where in 1993 the STD level is only 29.26% of the

1990 STD level [9]. Moreover, Thongthai and Guest [10] reported from a 1993 survey that

10.1% of the males surveyed (age 15-49) had bought sex in the last 12 months, as compared

to 21.8% in a similar survey conducted in 1990 by Sittitrai et al. [11]. Finally, the success of

the 100% Condom Program is also clearly evident by comparing the two surveys. In the 1990

Survey only 33.3% of the male respondents who had commercial sex in the last 12 months

used a condom every time they bought sex, while 34.1% never use condom when engaged

in commercial sex. By 1993, the survey showed the corresponding numbers are 71.4% al-

ways use condom and 10.9% never use condom in commercial sex. However recent results of

sustaining prevalence rates among the male army conscripts, pregnant women, and IVDU’s

from the Thai HIV Serosurveillance Survey, Round 16, June 1998 [12] do not give any clear

indication that the prevention measures have had a positive impact. Whether the change

in behaviour resulting from the prevention programs, along with the on-going development

of vaccine, will be enough to slow down and eventually stop the spread of the epidemic is a

question we must explore [13].

A model was proposed by Busenberg,Cooke, and Hsieh [14] aimed at studying the impor-

tance of the CSW’s, although in that work the bridge population was expanded to include all

unpartnered young men for the purpose of simplifying the model. The results showed that,

among others, the recruitment rate of the CSW’s and the relative difference in turnover rate

(by death and retirement) of the CSW’s once they become infected are important factors in

determining whether the disease will persist.

In this work, we propose a model to further study the possible effect of treatment and

behaviour change of the core group of CSW’s and the bridge population in the society

with the above-mentioned situation. A prevention program targeting CSW’s for educational

campaign and promoting use of condoms has been implemented in Thailand since 1994,

although with only limited success (see [15]). Theoretical studies of the effect of treatment

and/or behaviour change on spread of HIV/AIDS and other STD’s can be found in, among

others, [16, 17, 18, 19, 20, 21, 22, 23, 24]. Other studies on heterosexual transmissions with

2



a group of prostitutes include [25] and [26].

In our present model, it is assumed that treatment leads to a change in transmission

probability of the treated individuals, and the behaviour change which occurs as a result of

treatment and education program leads to reduced sexual contacts or less risky behaviour

(such as use of condom). Both occurrences would affect the spread of the disease on the

population level. To study its effect, we will use a model of linear treatment/behaviour

change rate which assumes that the number taken into treatment or undergoing behaviour

change is proportional to the number of untreated infecteds. (See [22] for a discussion on

the choice of linear treatment rate.)

The model in [14] contains a ”supply and demand” assumption on the recruitment of

the prostitute core group which simply states that the recruitment rate of the CSW’s is

proportional to the number of potential male customers. In order to take into account of the

behaviour change in the male customers, we have generalized this assumption to having the

recruitment rate of CSW’s proportional to the total number of contacts between males and

females in the population. In the instances when no behaviour change occurs, this reduces

to the model of [14].

In Section 2, we formulate the generalized model with treatment and behaviour change

and give some general mathematical results which enables us to study a reduced system

of equations. In Section 3 analytical results are given in the framework of screening and

removal of the detected infecteds from sexually active population (see [27] for a similar

model for gay population), i.e., the treated infecteds are confined to having sexual contacts

only with other treated infecteds through education programs which lead to the change in

behaviour. Some numerical examples are also given to illustrate the biological significance

of the results. In Section 4 we describe some general mathematical results which enables us

to reduce our model equations down to a four-dimensional system. In Section 5 we obtain

relevant threshold parameters for the special case of treatment and behaviour change for

only the bridge population. Local analysis is given followed by a discussion on the biological

significance of these parameters with numerical examples. Finally Section 6 contains some
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general remarks.

2 The Model

We consider four population groups of sexually active individuals: the core group of CSW’s;

the young unpartnered males; the young noncore females; and married couples. Within

the core and young unpartnered males groups, there is a further division into susceptibles

(non-infected), untreated infecteds, and treated infecteds. Thus we introduce the following

symbols, all of which are assumed to vary with time.

F0 = number of susceptible core females

U0 = number of untreated infective core females

T0 = number of treated infective core females

M1 = number of susceptible unpartnered young males

U1 = number of untreated infective unpartnered young males

T1 = number of treated infective unpartnered young males

F1 = number of susceptible noncore young females

f1 = number of infective noncore young females

S2 = number of couples in which both partners are susceptible

I2 = number of couples in which one or both partners are infective.

We make note of the following assumptions, which we make to focus on the role of

prostitution as the primary mode of spread.

Assumptions: Homosexual and drug activity are not included. Sexual contact of

single males other than with prostitutes is neglected. Individuals in pairs do not have
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extra-marital contacts. No break-up of pairs. All pairs are either susceptible or infective.

No vertically transmitted HIV-infectives survive to join the sexually active population.

Moreover, we assume the ”bridge population” to be the group of all unpartnered young

men to keep our model simple. In a related work in preparation [28], different sexual activity

levels will be assigned to the unpartnered young men with the group of highly sexually active

unpartnered young men acting as the bridge population for the spread of epidemic.

We also introduce the following parameters for the model, all of which are assumed to be

nonnegative (note that all parameters with the prime(’) are the corresponding parameters

for the treated classes):

α∗(cmM1 + cmU1 + c′mT1), the rate at which the core females (CSW’s) are recruited, which

is assumed to be proportional to the total number of required contacts per year by

young men. This is a ”supply and demand” assumption. α∗, a positive constant less

than one, is the constant of proportionality at which the core prostitutes are recruited.

µi, µ̄i, and µ̄′
i (i = 0,1,2), removal rates due to death or removal from the geographic area

or withdrawal from sexual activity in various populations.

cf and c′f , the contact rates or number of sexual contacts per unit time for untreated

(including susceptible) and treated core females, respectively.

cm and c′m, the contact rates or number of sexual contacts per unit time for untreated

(including susceptible) and treated young males.

β and β′, the male-to-female transmission probabilities per sexual contact from untreated

and treated young males, respectively.

β̄ and β̄′, the female-to-male transmission probabilities per sexual contact from untreated

and treated core females, respectively. Note that we assume the male-to-female trans-

mission probability is greater than that of female-to-male (i.e. β > β̄).

ρ0, ρ̄0, and ρ̄′0, the respective rates at which susceptible, infected untreated, and treated

core females ”retire” and move to the noncore female population.
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σ1, σ̄1, and σ̄′
1, the respective pairing rates of susceptible, untreated and treated infective

young males who form couples with noncore females. Note that we assume that these

rates depend on the health status of the males, but not on the health status of the

noncore females with whom they form pair. Thus the male is assumed no to know

whether the female partner is infected at the time of pair-forming.

2b, the per capita rate at which new mature individuals enter the young male and young

female groups (births per susceptible couple times the survival fraction). A one-to-one

sex ratio is assumed.

ω, a factor multiplying b for births to infective couples, represents the reduced probability at

which children of infective couples will survive to enter the sexually active population

compared to children of non-infective couples.

We assume the following hypotheses on these parameters:

H1. cm(U1 + M1) + c′mT1 = cf (U0 + F0) + c′fT0

This ”conservation of total contacts” hypothesis states that the total number of contacts

made by males with females, per unit time, is equal to the total number of contacts made

by females with males, per unit time. Typically, cf > cm, c′f > c′m , and the young male

population U1 + M1 + T1 is larger than the core female population U0 + F0 + T0. We note

then that we have

α∗[cm(U1 + M1) + c′mT1] = α[(U0 + F0) + c′f/cfT0], (1)

where α = cfα
∗. Since our model does not postulate constant population sizes, the param-

eters cm, cf , c
′
m, c′f , α, and α∗ will in general vary with time or according to the state of the

system and the preference of the individuals. However, in this paper the contact rates are

also assumed to remain constant in time (see [29] or [14] for a discussion). As a consequence,

the population sizes of the core females and unpartnered men must vary to keep the number

of total contacts balanced as the total population size varies. However, this is consistent with

our ”supply and demand” hypothesis where the CSW’s are recruited in constant proportion

to the number of contacts of unpartnered males.
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H2′. µ̄0 + ρ̄0 > µ0 + ρ0, µ̄0 + ρ̄0 > µ̄′
0 + ρ̄′0,

H3. cm ≥ c′m, cf ≥ c′f , β ≥ β′, β̄ ≥ β̄′, β ≥ β̄, β′ ≥ β̄′.

H2’ is based on the plausible assumption that the rate of ”removal” plus ”retirement”

from the group of untreated infected CSW’s is greater than the same rates for the susceptible

CSW’s and the treated infected CSW’s. H3 assumes that treatment results in lesser or equal

contact rates and transmission probabilities for the treated individuals; and the male-to-

female transmission probability is greater than or equal to the female-to-male transmission

probability (see, e.g. [30]).

The next hypothesis concerns the nature of the mixing of subgroup members (see e.g.

[31], [32]) where we assume proportional mixing. The incidence rate of new infections within

the core group may then be written as

H4. cfF0[
cmβU1

cm(U1 + M1) + c′mT1

+
c′mβ′T1

cm(U1 + M1) + c′mT1

] =

cfF0[
cmβU1

cf (U0 + F0) + c′fT0

+
c′mβ′T1

cf (U0 + F0) + c′fT0

].

The first quantity before the equal sign may be justified as the product of cf , the number

of contacts of a susceptible CSW times the number of susceptible CSW’s, times the sum of

the respective probabilities that a susceptible CSW will be infected by an untreated infected

young man and a treated young man per contact. The equality is due to Hypothesis H1.

H5′. µ̄1 + σ̄1 > µ̄′
1 + σ̄′

1

This intuitive hypothesis assumes that the removal plus pair-forming of the untreated

infected young men is greater than that of the treated infected young men.

Finally, let N0 = F0 + U0 + T0 and N1 = M1 + U1 + T1 be the numbers of sexually

active core female and unpartnered male populations, respectively. The respective numbers

of infected CSW’s and unpartnered men detected and treated at each time unit, σ̄f (U0, N0)

and σ̄m(U1, N1) are assumed to depend on the population size of the yet untreated infecteds

as well as the prevalence of untreated HIV-infected persons for each sex. Clearly we must

have σ̄j ≥ 0, j = f, m and σ̄f (0, N0) = σ̄m(0, N1) = 0. Furthermore, in this paper we assume
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the treatment terms to be linear functions of the untreated infecteds, i.e.

H6. σ̄f (U0, N0) = σfU0, σ̄m(U1, N1) = σmU1,

where σf and σm are nonnegative constants less than one and measure the effectiveness of

the treatment program in bringing untreated infecteds into the program. HIV models using

linear rate of treatment include [16, 17, 22]. Also note that σf and σm are different from σ1,

the pairing rate of the susceptible males.

H7′. α + µ̄1 + σ̄1 ≥ µ̄0 + ρ̄0 + σf

The last assumption H7′ says that the recruitment rate of the CSW’s plus the total

dispersal rate (removal and pairing) of an untreated infected single man must be greater or

equal to the total dispersal rate (removal plus retirement and detection) of the untreated

infected CSW’s. This roughly implies that the dispersal of untreated single men and the

recruitment of untreated CSW’s must exceed the dispersal of the untreated infected CSW’s,

thereby maintaining the core group in balance. While less intuitive, H7’ ensures the well-

posedness of our model equations.

We have the following model equations, where d
dt

denotes derivative with respect to time.

dF0

dt
= α∗[cm(U1 + M1) + c′mT1]− (µ0 + ρ0)F0 − cfF0[

cmβU1

cf (U0 + F0) + c′fT0

+ (2)

c′mβ′T1

cf (U0 + F0) + c′fT0

]

dU0

dt
= cfF0[

cmβU1

cf (U0 + F0) + c′fT0

+
c′mβ′T1

cf (U0 + F0) + c′fT0

]− (µ̄0 + ρ̄0)U0 − σfU0

dT0

dt
= σfU0 − (µ̄′

0 + ρ̄′0)T0

dM1

dt
= b(S2 + ωI2)− cmM1[

cf β̄U0

cf (U0 + F0) + c′fT0

+
c′f β̄

′T0

cf (U0 + F0) + c′fT0

]− (µ1 + σ1)M1

dU1

dt
= cmM1[

cf β̄U0

cf (U0 + F0) + c′fT0

+
c′f β̄

′T0

cf (U0 + F0) + c′fT0

]− (µ̄1 + σ̄1)U1 − σmU1

dT1

dt
= σmU1 − (µ̄′

1 + σ̄′
1)T1

dS2

dt
= σ1

M1F1

f1 + F1

− µ2S2
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dI2

dt
= σ1

M1f1

f1 + F1

− µ̄2I2 + σ̄1U1 + σ̄′
1T1

dF1

dt
= b(S2 + ωI2) + ρ0F0 − µ1F1 −

F1

f1 + F1

(σ1M1 + σ̄1U1 + σ̄′
1T1)

df1

dt
= ρ̄0U0 + ρ̄′0T0 − µ̄1f1 −

f1

f1 + F1

(σ1M1 + σ̄1U1 + σ̄′
1T1)

Detailed explanations of some of the equations were given in [14]. Here we will focus on

what distinguishes the present generalized model from the model in [14]. The last two terms

in the first equation represent the incidence of new infections with the extra term for the

infections due to the treated young males. The first term in the first equation represents the

recruitment of new core females, which is assumed to be proportional to the total number

of contacts by young males (or total trade volume of the sex business). We are therefore

implicitly assuming an unlimited resource for recruitment.

First two terms in the second equation represent the incidence of newly infecteds. The

last term represents the detection and treatment of infected core females which in general

depends on the size of the untreated infective core population U0 as well as the total core

female population N0. The first term in the third equation is the newly treated individuals

and the other term is the corresponding term for removal and transfer of treated infecteds.

In the equation for dM1

dt
, bS2 gives the rate of birth and survival to maturity of young

males from susceptible pairs, and bωI2 the same rate for young males from infected pairs.

There is no similar term in the equation for dU1

dt
because vertical transmission is not considered

in this model. The second term in the dM1

dt
equation and the first term in the dU1

dt
equation

represent incidence of infection of males due to contact with infected core females (both

untreated and treated). The terms µ1M1, µ̄1U1, and µ̄1T1 are for ‘removals’ and the terms

σ1M1, σ̄1U1, and σ̄1T1 give the rate at which males form new pairs. The last term in

the equation for dU1

dt
represents detection and treatment of previously untreated infecteds.

Similarly for the terms in the equation for dT1

dt
.

Finally, detailed explanation of the terms representing formation of pairs can be found

in [14]. More general discussion of such pairing functions may also be found, for example, in

[33] or [25].
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Using hypothesis H1, we replace α∗[cm(U1 +M1)+ c′mT1] by α[(U0 +F0)+ c′fT0/cf ]. We

further use H6 to decouple the equations for F0, U0, T0, U1 and T1 from the others. Moreover,

by redefining µ0 to be the former µ0 + ρ0, µ̄0 to be the former µ̄0 + ρ̄0, µ̄′
0 to be the former

µ̄′
0 + ρ̄′0, µ̄1 to be the former µ̄1 + σ̄1, and µ̄′

1 to be the former µ̄′
1 + σ̄′

1, we can write these

equations in the following simpler form

dF0

dt
= α[(U0 + F0) +

c′f
cf

T0]− µ0F0 − cfF0[
cmβU1

cf (U0 + F0) + c′fT0

+

c′mβ′T1

cf (U0 + F0) + c′fT0

], (3)

dU0

dt
= cfF0[

cmβU1

cf (U0 + F0) + c′fT0

+
c′mβ′T1

cf (U0 + F0) + c′fT0

]− µ̄0U0 − σfU0, (4)

dT0

dt
= σfU0 − µ̄′

0T0, (5)

dU1

dt
= cf β̄U0 + c′f β̄

′T0 − (cmU1 + c′mT1)
cf β̄U0 + c′f β̄

′T0

cf (U0 + F0) + c′fT0

− µ̄1U1 − σmU1 (6)

dT1

dt
= σmU1 − µ̄′

1T1. (7)

Hypothesis H2′, H5′, and H7′ now take the following forms.

H2. µ̄0 > µ0, µ̄0 > µ̄′
0

H5. µ̄1 > µ̄′
1

H7. α + µ̄1 ≥ µ̄0 + σf

3 Screening and Removal by Treatment from Contact

with Active Population

Our first result concerns the special case for this system where the treated infecteds are

refrained completely from sexual contacts in the susceptible sexually active population so

that c′m = c′f = 0 and, consequently, N0 = F0+U0 as T0 is no longer part of the sexually active

core female population. This assumption is appropriate in the instances where, through a

treatment program which includes educational sessions that result in behaviour change, the
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treated infected individuals confined all their sexual contacts to other treated infecteds. The

model does not specifically include possible contacts of treated infected core females with

treated infected unpartnered men, since we may assume that such contacts would have a

negligible effect on the progress of the epidemic. For a similar model with homosexual

populations, see [27]. Also see [24] for an STD epidemics model with isolation strategies.

Consequently, we can eliminate Equations (5) and (7) for T0 and T1 from our system of

equations in (3)-(7). Moreover, we now introduce the notation

y1 =
F0

N0

, y2 =
U0

N0

, y4 =
U1

N0

.

Using the fact that y2 = 1− y1, our system becomes

dy1

dt
= −y1cmβy4 + (1− y1)[α + (µ̄0 + σf − µ0)y1], (8)

dy4

dt
= (cf β̄ − cmy4β̄)(1− y1)− y4[α + µ̄1 − µ0 + σm − (µ̄0 + σf − µ0)(1− y1)], (9)

which is the same as (14)-(15) in [14] except y3 becomes y4, µ̄0 becomes σf + µ̄0, and µ̄1

becomes µ̄1 + σm. Hence the analysis follows similarly.

We define the following parameters:

S = {(y1, y4) : 0 < y1 < 1, 0 < y4 < cf/cm}

A = (µ̄0 + σf − µ0)(cmβ̄ − µ̄0 − σf + µ0)

B = cmβ̄(cfβ + α)− (µ̄0 + σf − µ0)(cmβ̄ − µ̄0 + µ̄1 + 2α− σf + σm)

C = −α(cmβ̄ − µ̄0 + µ̄1 + α + σm − σf )

R2
f =

cmcfββ̄

(α + σf + µ̄0 − µ0)(α + σm + µ̄1 − µ0)
, Rf > 0.

R2
0 = cmcfββ̄/(µ̄0 + σf )(µ̄1 + σm).

R1 =


α

µ0

if Rf ≤ 1

α

µ0 + (µ̄0 + σf − µ0)y∗2
if Rf > 1

where y∗2 denotes an endemic equilibrium value of y2.

11



R∗
1 =


α

µ0

if (y1, y2, y4) → (1, 0, 0)

α

µ0 + (µ̄0 + σf − µ0)ȳ2

if (y1, y2, y4) → (ȳ1, ȳ2, ȳ4)

where (ȳ1, ȳ2, ȳ4) could be any endemic equilibrium.

A, B, C, are the coefficients of the quadratic equation Ay2+By+C = 0. The roots of the

equation in (0, 1), if they exist, yield the y1 values of positive equilibria for System (8)-(9).

Rf is the threshold parameter which determines the persistence of the endemic fractions in

the population. R0 is the basic reproductive number for the infected populations, while R1

is a threshold parameter determining whether the total population goes to ∞ or 0. Note

that all these parameters are the same as in [14] except µ̄0 is replaced by µ̄0 + σf and µ̄1

replaced by µ̄1 + σm. Hence the following result for existence, uniqueness, and stability of

positive equilibrium of System (8)-(9) is reproduced from Theorem 2 in [14] where ”AS”

denotes locally asymptotically stable:

TABLE 1

Analytical Result for Positive Equilibrium of Model

Number of positive

Rf Equilibria Stability

Case I A > 0 > 1 1 AS

≤ 1 0 -

Case II A = 0 > 1 1 AS

≤ 1 0 -

Case III A < 0 > 1 1 AS

= 1 0(A ≥ C) -

1(A < C) AS

< 1 0(B2 < 4AC) -

1(B2 = 4AC) Stable

2(B2 > 4AC) One AS, one unstable
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Furthermore, we also have the following results for the present model which were also

proven in [14]:

Theorem 1. (1) If A ≥ 0 , the disease-free equilibrium (abbreviated DFE) at (1, 0) is globally

asymptotically stable (abbreviated G.A.S.) within the set S if Rf ≤ 1. If Rf > 1, the unique

endemic equilibrium is G.A.S. within S.

(2) If A < 0, the above result still applies unless (i) Rf = 1 and A < C, or (ii) Rf < 1

but B2 ≥ 4AC. For case (i), DFE is linearly stable but not attracting in S. So the unique

endemic equilibrium is G.A.S. in S. For case (ii), when B2 > 4AC there are two endemic

equilibria in S where the one with smaller y1 value is asymptotically stable and the other

unstable. The stable manifold of the unstable endemic equilibrium divides S into two regions

which are the domains of attraction for the asymptotically stable endemic equilibrium and the

asymptotically stable DFE. Hence we have a saddle-node connection. When B2 = 4AC,

we have a saddle-point bifurcation of the previous case so that there is a unique endemic

equilibrium. The stable manifold of the endemic equilibrium once again divides S into two

regions which are the domains of attraction for itself and DFE.

Theorem 2. Assume Cases I or II in Theorem 1. The limiting values of variables F0, U0, M1, U1

are given in Table 2.

TABLE 2

Limiting values of variables for Cases I and II.

Rf R1 R0 N0(t) (y1, y2, y4) (F0, U0, U1, M1)

≤ 1 < 1 < 1a 0 (1,0,0) (0,0,0,0)

> 1 < 1 0 (y∗1, y
∗
2, y

∗
4) (0,0,0,0)

> 1 > 1 > 1a ∞ (y∗1, y
∗
2, y

∗
4) (∞,∞,∞,∞)

≤ 1 > 1 < 1 ∞ (1,0,0) (∞, 0, 0,∞)

≤ 1 > 1 > 1 ∞ (1,0,0) (∞,∞,∞,∞)

a means automatically satisfied.
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For Case III, Table 2 is valid if: (i) Rf > 1 or (ii) Rf ≤ 1 and

A ≥ C

or (iii) Rf < 1 and B2 < 4AC. When (a) Rf = 1 and A < C or (b) Rf < 1 and B2 ≥ 4AC,

asymptotic behaviour of the population depends on whether the initial value of the popu-

lation is in the domain of attraction of the DFE or not. When Rf < 1 and B2 ≥ 4AC

there is the stable manifold of an positive equilibrium which separates the domains of at-

traction of the DFE and an asymptotically stable positive equilibrium (see Theorem 4 in [14]

for a detailed discussion). Consequently, the asymptotic behaviour of the population once

again depends on whether the initial value of the population is in the domain of attraction

of the DFE or not. The results are summarized in Table 3 where (ȳ1, ȳ2, ȳ4) is a positive

equilibrium.

TABLE 3

Limit values of variables for Case III when Rf = 1 and A < C or Rf < 1 and B2 ≥ 4AC.

(y1, y2, y4) R∗
1 R0 N0 (F0, U0, U1, M1)

(1, 0, 0)/(ȳ1, ȳ2, ȳ4) < 1 < 1a 0 (0,0,0,0)/(0,0,0,0)

(ȳ1, ȳ2, ȳ4) > 1 > 1a ∞ (∞,∞,∞,∞)

(1, 0, 0) > 1 < 1 ∞ (∞, 0, 0,∞)

(1, 0, 0) > 1 > 1 ∞ (∞,∞,∞,∞)

a means automatically satisfied.

Table 3 follows directly from Table 2, except that the limiting value of (y1, y2, y4) is

placed in the first column since the value of R∗
1 depends on the value of ȳ2,

3.1 Numerical Examples and Discussion

We now consider the biological implications of our results, still under the assumption that

c′m = c′f = 0. σf , σm ∈ [0, 1] are the respective fractions of infective core females and infective
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young men removed from sexual contacts with the active population at each time interval.

It is clear that if cmcfββ̄ > (1 + µ̄0 + α − µ0)(1 + µ̄1 + α − µ0), Rf will always be greater

than one for all values of σf and σm and, by Table 1 and Theorem 1, a population with some

infecteds will always approach the endemic equilibrium. Hence we only consider the case

when cmcfββ̄ ≤ (1 + µ̄0 + α− µ0)(1 + µ̄1 + α− µ0).

We will use the following notations:

A0 = (µ̄0 − µ0)(cmβ̄ − µ̄0 + µ0)

B0 = cmβ̄(cfβ + α)− (µ̄0 − µ0)(cmβ̄ − µ̄0 + µ̄1 + 2α)

C0 = −α(cmβ̄ − µ̄0 + µ̄1 + α)

R̄2
f =

cmcf ββ̄

(α+µ̄0−µ0)(α+µ̄1−µ0)
, Rf > 0.

That is, A0, B0, C0, and R̄2
f are the respective parameters obtained from A, B, C,R2

f by

letting σf = σm = 0.

There are the following two cases in which the above-mentioned treatment program is

needed to help drive the endemic fraction down to zero.

Case (i) If A0 > 0, R̄2
f > 1, and σf ∈ (0, cmβ̄−µ̄0+µ0]. The first two conditions indicate that

without any such program (σf = σm = 0) the endemic fractions will persist in the population

(see Table 1). In this situation σf ∈ (0, cmβ̄−µ̄0+µ0] implies that the program will enable the

population fractions to approach DFE if and only if σmσf +(µ̄0+α−µ0)σm+(µ̄1+α−µ0)σf ≥

[R̄2
f − 1](µ̄0 + α− µ0)(µ̄1 + α− µ0). We then have R2

f ≤ 1.

Case (ii) If (1) A0 > 0, R̄2
f > 1, σf ∈ (cmβ̄ − µ̄0 + µ0, 1]; or (2) A0 = 0 and R̄2

f > 1; or

(3) A0 < 0. In cases (1) and (2), the endemic fraction will persist unless certain additional

conditions on treatment are met. In the scenario for (3), the endemic fraction will persist if

R̄2
f > 1. If R̄2

f = 1, the endemic fraction will persist if and only if A0 < C0. If R̄2
f < 1, the

endemic fraction will go to zero if B0
2 < 4A0C0, otherwise the persistence of endemic fraction

depends on the initial fractions. In all situations where the endemic fraction persists, the

program will help to drive the endemic fraction to zero if

(a) σmσf +(µ̄0 +α−µ0)σm +(µ̄1 +α−µ0)σf = [R̄2
f−1](µ̄0 +α−µ0)(µ̄1 +α−µ0), A ≥ C;

or
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(b) σmσf +(µ̄0+α−µ0)σm+(µ̄1+α−µ0)σf > [R̄2
f−1](µ̄0+α−µ0)(µ̄1+α−µ0), B

2 < 4AC.

If the first condition in case (b) is met but we have B2 ≥ 4AC instead of B2 < 4AC, whether

the program is helpful depends on whether the initial data is in the region of attraction of

the DFE or the locally asymptotically stable endemic equilibrium.

Now let us consider a simplified case where σm = 0, i.e. only female core infecteds are

treated. Here for the program to be helpful it is necessary that cmcfββ̄ ≤ (µ̄1 +α−µ0)(σf +

µ̄0 + α− µ0). Moreover, we have the following simpler expressions for A, B, C and Rf .

A = A0 + σf (cmβ̄ − 2µ̄0 + 2µ0 − σf )

B = B0 + σf (2µ̄0 − µ0 − µ̄1 − cmβ̄ − 2α + σf )

C = C0 + ασf

R2
f =

cmcfββ̄

(µ̄1 + α− µ0)(σf + µ̄0 + α− µ0)
.

Furthermore, Hypotheses H2 and H7 yield µ̄1 + α ≥ µ̄0 ≥ µ0.

We consider the three subcases in Case (ii) above separately.

(1) A0 > 0, R̄2
f > 1, σf ∈ (cmβ̄ − µ̄0 + µ0, 1].

The program is significant if

(a) σf = (R̄2
f − 1)(µ̄0 − µ0 + α) and σ2

f − (cmβ̄ − 2µ̄0 + 2µ0 − α)σf ≤ A0 − C0.

or

(b) σf > (R̄2
f − 1)(µ̄0 − µ0 + α) and 4AC > B2.

To illustrate our result, we give the numerical example in Figs. 1-2. Note that the x-axis

is the susceptible fraction y1 of the core female population and the y-axis is the number of

untreated infected young men divided by the total core female population y4. In Fig.1, we

let α = 0.3, β = 0.01, β̄ = 0.01, cm = 15, cf = 200, µ0 = 0.1, µ̄0 = 0.2, µ̄1 = 0.4. Moreover,

we assume no treatment, i.e., σf = σm = 0. As a result, A0 > 0 and R̄2
f > 1. There is an

endemic equilibrium (0.7682, 0.7580) which is G.A.S. in S − (1, 0), while the DFE (1, 0) is

an unstable equilibrium. When we have a detection/removal program targeted toward the

core females with σf = 0.1 and the latter inequality in (1a) satisfied, the DFE will become

G.A.S. in the region S. Indeed, if we let σf = 0.1, i.e., the infected core females are detected

and removed from the active population at 10% rate, DFE becomes G.A.S. for S (see Fig.2).
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In fact, DFE is G.A.S. as long as σf ∈ [0.1, 1] since it can be easily shown that, for σf > 0.1,

the latter inequality in (1b) is also satisfied.

(2) A0 = 0 and R̄2
f > 1.

The program is helpful in this instance if

(a) σf = (R̄2
f − 1)(µ̄0 − µ0 + α) and σ2

f − (cmβ̄ − 2µ̄0 + 2µ0 − α)σf ≤ −C0.

or

(b) σf > (R̄2
f − 1)(µ̄0 − µ0 + α) and 4AC > B2.

(3) A0 < 0.

The program is helpful if

(a) σf = (R̄2
f − 1)(µ̄0 − µ0 + α) and σ2

f − (cmβ̄ − 2µ̄0 + 2µ0 − α)σf ≤ A0 − C0.

or

(b) σf > (R̄2
f − 1)(µ̄0 − µ0 + α) and 4AC > B2.

Here we give the following numerical example. Let α = 1, β = 0.1, β̄ = 0.1, cm =

10, cf = 100, µ0 = 1, µ̄0 = 3.165, µ̄1 = 3.165. Fig.3 is Example 2 in [14] where there is

an asymptotically stable endemic equilibrium at (0.8252, 0.5903) and a hyperbolic endemic

equilibrium (a saddle point) at (0.9608, 0.1256). (Note that the range for the x-axis is from

0.5 to 1.0.) Depending on the initial population, the population may tend toward DFE at

(1, 0) or the endemic equilibrium at (0.8252, 0.5903). Since A0 < 0 and Rf = 10/(3.165)2 < 1,

the condition on σf in (3b) is always satisfied. If we let σf = 0.003, i.e., 0.3% of the infected

core females detected and removed from the active core female population, Fig.4 shows

that the basic dynamics of the system remains the same, except the asymptotically stable

endemic equilibrium is now at (0.8471, 0.5120) and the hyperbolic endemic equilibrium at

(0.9311, 0.2234). The reason is that the latter condition in (3b), 4AC > B2, is not satisfied.

However when we let σf = 0.1, the only equilibrium is the DFE and it is G.A.S. in S

(see Fig.5). Hence while a program that detected 0.3% of the infected core females would

not make much difference, a program of 10% detected would be immeasurably beneficial

in changing the course of the epidemic. Moreover, since the problem is well-posed for all

σf ∈ [0, 1], this program would be decisively beneficial for all values of σf ∈ (0, 1].
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In (1)-(3) above, the conditions (a) and (b) are only sufficient. Note that in Fig.4

although the dynamic behaviour of the system is unchanged, the hyperbolic equilibrium has

shifted slightly from (0.9608, 0.1259) to (0.9311, 0.2234). Hence for an initial population in

the region of attraction of the locally asymptotically stable endemic equilibrium and near

(0.9608, 0.1259), a program with σf = 0.003 may shift the same initial population into the

domain of attraction of the DFE. Consequently, for some values of initial population, the

program will still be helpful.

The case when the unpartnered men are treated, i.e. σf = 0 can be discussed in similar

fashion and hence is omitted to save space. However we will make the following remark on

the relative effectiveness of the two targeting programs (i.e. unpartnered men or CSW’s).

For a treatment program targeted at CSW’s only (σm = 0), the necessary (but not sufficient)

condition for eradication R2
f ≤ 1 is equivalent to σf ≥ σ∗

f where σ∗
f is the threshold treatment

rate given by

σ∗
f =

cmcfββ̄ − (α + µ̄0 − µ0)(α + µ̄1 − µ0)

α + µ̄1 − µ0

.

On the other hand, for a treatment program aimed at unpartnered men, the corresponding

threshold treatment rate is

σ∗
m =

cmcfββ̄ − (α + µ̄0 − µ0)(α + µ̄1 − µ0)

α + µ̄0 − µ0

.

Note that the only difference in the two thresholds is one term in the denominators, namely,

µ̄1 in σ∗
f and µ̄0 in σ∗

m. These terms are the respective AIDS-related removal rates for

infected females and males which often are assumed to be the same in literature, due to

the lack of evidence to the contrary. In most of the numerical examples in this paper, we

also assume that µ̄1 and µ̄0 (and subsequently the threshold treatment rates σ∗
f and σ∗

m)

are the same. Hence treating the two groups are essentially equally effective. However, we

note that the CSW’s group is much smaller in number when compared to unpartnered men.

Consequently, treating at the same rate but aiming at the smaller CSW group would result

in a much smaller number of individuals requiring treatment and thus be a more efficient

and effective program in terms of budget cost for the program.
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4 Treatment and behaviour Change

In this section we consider the general model where there is a community-wide program to

detect and treat HIV-infecteds, or to alter the sex behaviour of the detected infecteds so that

their probabilities to transmit the HIV virus to others are decreased. We now introduce the

notation

N̄0 = F0 + U0 +
c′f
cf

T0, y1 =
F0

N̄0

, y2 =
U0

N̄0

, y3 =
c′f
cf

T0

N̄0

, y4 =
U1

N̄0

, y5 =
T1

N̄0

.

Simple calculation then gives the following equations.

dN̄0

dt
= N̄0[α− µ0 − (µ̄0 − µ0)y2 − (µ̄′

0 − µ0)y3]− σfy2Ū0(1−
c′f
cf

), (10)

dy1

dt
= α− y1(cmβy4 + c′mβ′y5)

−y1[α + µ0(1− y1)− µ̄0y2 − µ̄′
0y3 − σfy2(1−

c′f
cf

)], (11)

dy2

dt
= y1(cmβy4 + c′mβ′y5)

−y2[α + σf − µ0y1 + (µ̄0 − µ0)(1− y2)− (µ̄′
0 − µ0)y3 − σfy2(1−

c′f
cf

)], (12)

dy3

dt
=

c′f
cf

σfy2 − y3[α− µ0y1 − µ̄0y2 + µ̄′
0(1− y3)− σfy2(1−

c′f
cf

)], (13)

dy4

dt
= (β̄y2 + β̄′y3)[cf − (cmy4 + c′my5)]

−y4[α + µ̄1 − µ0 + σm − (µ̄0 − µ0)y2 − (µ̄′
0 − µ0)y3 − σfy2(1−

c′f
cf

)], (14)

dy5

dt
= σmy4 − y5[α + µ̄′

1 − µ0 − (µ̄0 − µ0)y2 − (µ̄′
0 − µ0)y3 − σfy2(1−

c′f
cf

)], (15)

with y1 + y2 + y3 = 1, 0 ≤ cmy4 + c′my5 ≤ cf . Because of Hypotheses H2, H3, H5, and

H7, these equations are well-posed and the set {yi ≥ 0, i = 1, 2, 3, 4, 5} in the 5-dimensional

space is invariant. Now we need only to consider the following four-dimensional system in

the set S = {yi, i = 1, 2, 3, 4 | yi ≥ 0, y1 + y2 ≤ 1, cmy4 + c′my5 ≤ cf}:

dy1

dt
= α− y1(cmβy4 + c′mβ′y5)

−y1[α− (µ̄0 − µ̄′
0)y2 − (µ̄′

0 − µ0)(1− y1)− σfy2(1−
c′f
cf

)], (16)
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dy2

dt
= y1(cmβy4 + c′mβ′y5)

−y2[α + σf + (µ̄0 − µ̄′
0)(1− y2) + (µ̄′

0 − µ0)y1 − σfy2(1−
c′f
cf

)], (17)

dy4

dt
= (β̄y2 + β̄′(1− y1 − y2))[cf − (cmy4 + c′my5)]

−y4[α + µ̄1 − µ̄′
0 + σm − (µ̄0 − µ̄′

0)y2 + (µ̄′
0 − µ0)y1 − σfy2(1−

c′f
cf

)], (18)

dy5

dt
= σmy4 − y5[α + µ̄′

1 − µ̄′
0 − (µ̄0 − µ̄′

0)y2 + (µ̄′
0 − µ0)y1 − σfy2(1−

c′f
cf

)]. (19)

Due to the difficulty in complete analysis for the 4-dimensional system, we will only give

partial results pertaining to the following threshold parameters.

R2
f =

cmcfββ̄

(α + σf + µ̄0 − µ0)(α + σm + µ̄1 − µ0)
+

σf

(α + µ̄0 − µ0 + σf )

cmc′fββ̄′

(α + µ̄′
0 − µ0)(α + µ̄1 − µ0 + σm)

+

σm

(α + µ̄1 − µ0 + σm)

cfc
′
mβ′β̄

(α + µ̄′
1 − µ0)(α + µ̄0 − µ0 + σf )

+

σf

(α + µ̄0 − µ0 + σf )

σm

(α + µ̄1 − µ0 + σm)

c′fc
′
mβ′β̄′

(α + µ̄′
1 − µ0)(α + µ̄′

0 − µ0)
, Rf > 0.

R2
0 =

cmcfββ̄

(µ̄0 + σf )(µ̄1 + σm)
+

σf

(µ̄0 + σf )

cmc′fββ̄′

µ̄′
0(µ̄1 + σm)+

σm

(µ̄1 + σm)

cfc
′
mβ̄β′

µ̄′
1(µ̄0 + σf )

+
σf

(µ̄0 + σf )

σm

(µ̄1 + σm)

c′fc
′
mβ′β̄′

µ̄′
0µ̄

′
1

, R0 > 0.

R1 =


α

µ0

if Rf ≤ 1

α

µ0 + (µ̄0 + σf − µ0)y∗2 + (µ̄′
0 + σf − µ0)y∗3

if Rf > 1

where y∗2, y
∗
3 denotes endemic equilibrium values of y2, y3.

These parameters have similar epidemiological significance as those in Section 3. How-

ever, since we are unable to do the complete analysis, we will discuss what conclusions we

have been able to draw from equations of the model.

4.1 Discussion

(i) First we note that the endemic fractions will always persist if Rf > 1. If Rf ≤ 1, the
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endemic fractions may or may not persist depending on other parameter values. In that

sense lowering Rf might be helpful. On the other hand, increasing Rf to exceed unity will

always result in persistence of the epidemic. To show this we know that R2
f > 1 is equivalent

to

[
cmcfββ̄

(α + µ̄0 − µ0)(α + µ̄1 − µ0)
− 1]+

σf

α + µ̄0 − µ0

[
cmc′fββ̄′

(α + µ̄′
0 − µ0)(α + µ̄1 − µ0)

− 1]+

σm

α + µ̄1 − µ0

[
cfc

′
mβ′β̄

(α + µ̄′
1 − µ0)(α + µ̄0 − µ0)

− 1]+

σfσm

(α + µ̄0 − µ0)(α + µ̄1 − µ0)
[

c′fc
′
mβ′β̄′

(α + µ̄′
1 − µ0)(α + µ̄′

0 − µ0)
− 1] > 0. (20)

If cmcfββ̄ > (α + µ̄0 − µ0)(α + µ̄1 − µ0), the epidemic will persist without any treat-

ment/behaviour change program, i.e. σf = σm = 0. However, the program can eradicate the

disease if and only if the expression on the left of the inequality in (20) is negative. That

can be achieved if

(a) at least one of the three inequalities: cmc′fββ̄′ < (α + µ̄′
0− µ0)(α + µ̄1− µ0), c′mcfβ

′β̄ <

(α + µ̄0 − µ0)(α + µ̄′
1 − µ0), and c′mc′fβ

′β̄′ < (α + µ̄′
0 − µ0)(α + µ̄′

1 − µ0) is met;

(b) σf and σm are sufficiently large.

In other words, the program can have a positive effect on eradicating the epidemic if and

only if the net transmission rate is lowered via treatment or behaviour change so that Con-

dition (a) above can be satisfied, and the program is sufficiently comprehensive so that the

expression on the left of the inequality in (20) is negative. Note also that since σf and

σm are bounded above by unity, it is conceivable that for some values of the parameters

cf , cm, β, β̄, α, µ0, µ̄0, and µ̄1, no treatment program can help on the population level. To be

more precise, treatment/behaviour change program will not lower Rf to below unity if

cmcfββ̄ > 1 + (α + µ̄0 − µ0)(α + µ̄1 − µ0) + (α + µ̄0 − µ0) + (α + µ̄1 − µ0).
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If, on the other hand, cmcfββ̄ ≤ (α+ µ̄0−µ0)(α+ µ̄1−µ0), the disease might not persist.

But treatment program will affect the spread of disease adversely by raising Rf to above

unity if (a) either cmcfββ̄ ≥ cmc′fββ̄′ > (α + µ̄′
0 − µ0)(α + µ̄1 − µ0), or cmcfββ̄ ≥ cfc

′
mβ′β̄ >

(α + µ̄0 − µ0)(α + µ̄′
1 − µ0); and (b) σf or σm sufficiently large so that the expression in

(20) becomes positive! This type of possible adverse effect of treatment/behaviour change

program on the population level was also present in a model of homosexual population by

Hsieh and Velasco- Hernandez[20]. We will give a numerical example of this phenomenon in

the next section when we consider treatment targeted at bridge population only.

(ii) We now consider R0 which is the basic reproductive number for the infected populations.

If cmcfββ̄ > µ̄0µ̄1, the infected populations will persist without any treatment program, i.e.

R0 > 1. Since R0 > 1 is equivalent to

[
cmcfββ̄

µ̄0µ̄1

− 1] +
σf

µ̄0

[
cmc′fββ̄′

µ̄′
0µ̄1

− 1] +
σm

µ̄1

[
cfc

′
mβ′β̄

µ̄′
1µ̄0

− 1] +
σfσm

µ̄0µ̄1

[
c′fc

′
mβ′β̄′

µ̄′
1µ̄

′
0

− 1] > 0,

the program might be helpful if and only if (a) either cmc′fββ̄′ ≤ µ̄′
0µ̄1 or cfc

′
mβ′β̄ ≤ µ̄′

1µ̄0,

and (b) σf and σm sufficiently large so that the above expression becomes negative. Again,

due to the upper bound of one for σf and σm, a program of this type cannot help to wipe

out the infected populations if

cmcfββ̄ > 1 + µ̄0µ̄1 + µ̄0 + µ̄1.

If cmcfββ̄ ≤ µ̄0µ̄1, the infected populations might not persist without any treatment

program. But if a program is initiated where (a) either cmc′fββ̄′ > µ̄′
0µ̄1 or cfc

′
mβ′β̄ >

µ̄′
1µ̄0, and (b) σf and σm large enough, the expression above becomes positive and infected

populations will definitely persist in the community.

(iii) Finally, we consider R1, the threshold parameter which determines whether the total

population increases to infinity or goes to 0 depending on whether R1 is greater than unity

or not. When Rf without treatment is less than or equal to one, the treatment program

has no effect on the persistence of total population. When Rf without treatment is great

than one, the treatment program (σf and σm in the denominator of R1) will always make
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R1 smaller, thus affecting the persistence of population adversely. The magnitude of effect

would depend on the relative size of the parameters involved.

5 Treatment and behaviour Change for Bridge Popu-

lation Only

To further understand our model, we can analyze our model with the treatment and be-

haviour change targeted toward either the bridge population of young men or the core group

of CSW’s. In this section we consider System (3)-(7) but with treatment program for bridge

population only. We do this in order to gain better understanding of what such program

would do for the spread of the epidemic in the population. Moreover, we can then compare

a treatment/behaviour change program with the detection/removal as discussed in Section

3. Subsequently we have σf = 0 and y3 = 0. System (16)-(19) is simplified into the following

3-dimensional system:

dy1

dt
= α− y1(cmβy4 + c′mβ′y5)

−y1[α− (µ̄0 − µ0)(1− y1)], (21)

dy4

dt
= β̄(1− y1)(cf − cmy4 − c′my5)

−y4[α + µ̄1 + σm − µ̄0 + (µ̄0 − µ0)y1], (22)

y5

dt
= σmy4 − y5[α + µ̄′

1 − µ̄0 + (µ̄0 − µ0)y1] (23)

We will consider the system in the 3-dimensional region in the first octant S3 = {(y1, y4, y5)|0 ≤

y1 ≤ 1, y4, y5 ≥ 0, 0 ≤ cmy4 + c′my5 ≤ cf}. We also assume H1-H7 to hold for all analytical

results that follow.

First we note that S3 is invariant for System (21-23). Using local analysis about the

DFE (1, 0, 0), we have the following theorem:

Theorem 3. Suppose cfcmββ̄ > (α + µ̄0 − µ0)(α + µ̄1 − µ0). Let

σ̄∗
m =

[cmcfββ̄ − (α + µ̄0 − µ0)(α + µ̄1 − µ0)](α + µ̄′
1 − µ0)

(α + µ̄0 − µ0)(α + µ̄′
1 − µ0)− c′mcfβ′β̄

.
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If (α + µ̄0 − µ0)(α + µ̄′
1 − µ0) ≤ c′mcfβ

′β̄, the DFE is unstable for System (21)-(23) for all

values of σm. On the other hand, when (α + µ̄0 − µ0)(α + µ̄′
1 − µ0) > c′mcfβ

′β̄, the DFE is

locally asymptotically stable if σm ≥ σ̄∗
m and unstable if otherwise.

Proof. The 3x3 Jacobian matrix for the system in question is

J =



−cmβy4 − c′mβ′y5 − α + (1− 2y1)(µ̄0 − µ0) −cmβy1 −c′mβ′y1

−β̄(cf − cmy4 − c′my5)− (µ̄0 − µ0)y4 −cmβ̄(1− y1)− α− µ̄1 −c′mβ̄(1− y1)

−σm + µ̄0 − (µ̄0 − µ0)y1

−(µ̄0 − µ0)y5 σm −α− µ̄′
1 + µ̄0

−(µ̄0 − µ0)y1


.

At the DFE (1, 0, 0), the Jacobian becomes

J(1, 0, 0) =


−α− (µ̄0 − µ0) −cmβ −c′mβ′

−cf β̄ −α− µ̄1 − σm + µ0 0

0 σm −α− µ̄′
1 + µ0

 .

H2, H5, and H7 imply trJ < 0. By considering the cases where detJ > 0, the theorem

follows directly. Q.E.D.

For analytical result regarding existence, uniqueness, and stability of positive equilibrium

of System (21)-(23), we first recall the corresponding parameters for the model without

treatment proposed in [14]:

R2
f =

cmcfββ̄

(α + µ̄0 − µ0)(α + µ̄1 − µ0)
, Rf > 0,

A = (µ̄0 − µ0)(cmβ̄ − µ̄0 + µ0),

B = cmβ̄(cfβ + α)− (µ̄0 − µ0)(cmβ̄ − µ̄0 + µ̄1 + 2α),

C = −α(cmβ̄ − µ̄0 + µ̄1 + α).

Note that the above expressions for R2
f , A, B, and C are different from the ones given in

Section 3 for the model with removal of infecteds.

For System (21)-(23), the positive equilibrium must satisfy the following cubic equation:

h(y) = C1y
3 + C2y

2 + C3y + C4

with
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C1 = A(µ̄0 − µ0),

C2 = B(µ̄0 − µ0) + A(α + µ̄′
1 − µ̄0) + σmA′,

C3 = C(µ̄0 − µ0) + B(α + µ̄′
1 − µ̄0) + σmB′,

C4 = C(α + µ̄′
1 − µ̄0) + σmC ′,

and

A′ = (µ̄0 − µ0)(c
′
mβ̄ − µ̄0 + µ0),

B′ = c′mβ̄(cfβ
′ + α)− (µ̄0 − µ0)(c

′
mβ̄ − µ̄0 + µ̄′

1 + 2α),

C ′ = −α(c′mβ̄ − µ̄0 + µ̄′
1 + α).

Note that A′, B′, and C ′ are, respectively, A, B, and C with cm, β, and µ̄1 replaced by

their respective primed terms for the treated classes c′m, β′, and µ̄′
1. We also know that C4

is negative due to Hypothesis H7 and C1 has the same sign as A due to H2.

To discuss stability of the system in question, we need the following result on nonexis-

tence of nonconstant periodic solutions.

Theorem 4. Suppose (i) c′mβ′ ≥ cmβ̄ + µ̄0 − µ0, (ii) cf β̄ + c′mβ̄ < µ̄′
1 + 2α − µ0, (iii)

σm > (c′mβ′− µ̄′
1 +µ0−α)+(cmβ̄− µ̄1 +µ0−α). Then System (21)-(23) has no nonconstant

periodic solutions in S3.

Proof. The proof utilizes Muldowney’s result [34] on compound matrices. More precisely,

we use Theorem 4.1 in Muldowney [34] which gives sufficient conditions for the nonexistence

of nonconstant periodic solutions. The details of the proof are omitted to save space. We

will only point out that, in the proof we employed the Lozinskii norm given by

sup
j

(Re aj
j +

∑
i6=j

| aj
i |).

Note also that the hypotheses H2-H3 and H7 are used in the proof. Q.E.D.

Now we are ready to give the theorem on local existence, uniqueness, and stability of

positive equilibrium of System (21)-(23).

Theorem 5. The local existence, uniqueness, and stability of positive equilibrium of System

(21-23) is described in the following table:

TABLE 4

Analytical Result for Positive Equilibrium of Model with Treatment
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Number of positive

R̄f Equilibria Stability

Case I C1 > 0 > 1 1, 2, or 3(C3 > 0 > C2) -

1(otherwise) AS

≤ 1 0, 1 or 2(C3 > 0 > C2) -

0(otherwise) -

Case II C1 = 0 > 1 1 AS

= 1 0(C2 ≥ C4) -

1(C2 < C4) AS

< 1 0(C3
2 < 4C2C4) -

1(C32 = 4C2C4) -

2(C3
2 > 4C2C4) -

Case III C1 < 0 > 1 1 AS

= 1 0(3C1 + 2C2 + C3 ≥ 0) -

1(3C1 + 2C2 + C3 < 0) -

< 1 0, 1, or 2 -

where

R̄2
f =

cmcfββ̄

(α + µ̄0 − µ0)(α + σm + µ̄1 − µ0)
+.

σm

(α + σm + µ̄1 − µ0)

c′mcfβ
′β̄

(α + µ̄0 − µ0)(α + µ̄′
1 − µ0)

R̄f > 0.

Note that R̄2
f > 1 is equivalent to σm < σ̄∗

m.

The proof of the local existence and uniqueness of positive equilibrium makes use of

Theorem 3 and elementary properties of cubic functions and calculus hence is omitted here.

The global stability result for the cases with multiple positive equilibria is not obtained since

the system (21)-(23) is not competitive in the sense of [35].

We now give the following epidemiologically important threshold parameters for System

(21)-(23):
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R̄2
0 =

cmcfββ̄

µ̄0(µ̄1 + σm)
+

σm

µ̄0

c′mcfβ
′β̄

µ̄′
1(µ̄1 + σm)

R̄0 > 0.

R̄1 =


α

µ0

if R̄f ≤ 1

α

µ0 + (µ̄1 + σm − µ0)y∗4 + (µ̄′
1 + σm − µ0)y∗5

if R̄f > 1

where y∗4, y
∗
5 denotes the unique endemic equilibrium values of y4, y5. Asymptotic results of

R̄0 and R̄1 similar to Tables 2-3 in Section 3 can be easily obtained and hence are omitted

here. Note also that here R̄f , R̄0, and R̄1 are different from their corresponding threshold

parameters Rf , R0, and R1 in Section 4.

5.1 Discussions

First we note that all results discussed in Section 5 on targeting the bridge population for

treatment and behaviour change can be obtained similarly for targeting the core group of

CSW’s. We want to compare the two targeting strategies, and hence no longer necessarily

assume σf = 0 as in (21)-(23). To begin we observe from Table 4 that, given a treatment

program targeted at the bridge population of unpartnered men, in order for the disease to be

eventually eradicated for all initial endemic fractions ((y1, y4, y5) 6= (1, 0, 0)), it is necessary

that R̄2
f ≤ 1 or, equivalently, σm ≥ σ̄∗

m. In other words, for the program to be successful, it is

necessary for the level of comprehensive detection and treatment of the infected unpartnered

men to be no less than the threshold treatment rate σ̄∗
m. Whether it does indeed eradicate

the disease in the community depends on the initial endemic fraction at the onset of the

epidemic.

We would like to compare the relative effectiveness of treating core females as opposed

to treating unpartnered males. It can be easily shown that for a targeting program aimed

at the core population of CSW’s, the corresponding threshold treatment rate σ̄∗
f is

σ̄∗
f =

[cmcfββ̄ − (α + µ̄0 − µ0)(α + µ̄1 − µ0)](α + µ̄′
0 − µ0)

(α + µ̄′
0 − µ0)(α + µ̄1 − µ0)− cmc′fββ̄′ .

Unlike the case of removal by treatment in Section 3 where the threshold treatment

rates, σ∗
f and σ∗

m, are virtually the same, σ̄∗
f and σ̄∗

m are quite different. We rewrite the two
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threshold treatment rates as follow:

σ̄∗
f =

cmcfββ̄ − (α + µ̄0 − µ0)(α + µ̄1 − µ0)

α + µ̄1 − µ0 −
cmc′

f
ββ̄′

α+µ̄′
0−µ0

.

σ̄∗
m =

cmcfββ̄ − (α + µ̄0 − µ0)(α + µ̄1 − µ0)

α + µ̄0 − µ0 − c′
mcf β′β̄

α+µ̄′
1−µ0

.

Note the only difference is in the fraction in the denominators involving the contact rates,

transmission probabilities, and removal rates of the treated infected individuals. Moreover,

σ̄∗
f and σ̄∗

m without the fraction in the denominators (i.e. the treated individuals having no

sexual contact outside the treated class) would be the same as the threshold treatment rates

σ∗
f and σ∗

m in Section 3. If (α+µ̄0−µ0)(α+µ̄′
1−µ0) ≤ c′mcfβ

′β̄, either treatment program will

be unable to eradicate the epidemic. If (α+µ̄0−µ0)(α+µ̄′
1−µ0) > c′mcfβ

′β̄, the smaller value

for the fraction in the denominator would result in a smaller threshold value. Consequently,

assuming no significant difference in removal rates for the treated unpartnered males and

core females, lower contact rate and transmission rate would lead to smaller threshold rate

value. Given the much smaller number of the core female group (CSW’s), this would indicate

that, with the same budget, treating the core female group will be more effective in efficiently

reducing the threshold as well as the actual number required to be treated to exceed the

threshold treatment rate.

As mentioned earlier in the discussion in Subsection 4.1, a treatment program which

does not meet all criteria on lowering the transmission probability β̄ and the contact rate cf

could have an adverse effect on the spread of epidemic. To illustrate this possibility, we now

give the following numerical examples. Note that the equivalent condition for R̄f > 1 is

[
cmcfββ̄

(α + µ̄0 − µ0)(α + µ̄1 − µ0)
− 1]+

σm

α + µ̄1 − µ0

[
c′mcfβ

′β̄

(α + µ̄0 − µ0)(α + µ̄′
1 − µ0)

− 1] > 0

In all following 3-dimensional figures, the x-, y-, and z-axes denote respectively the

susceptible fraction of core females, the untreated infected fraction of core females, and the

untreated infected fraction of unpartnered males. First we let α = 0.2, β = β̄ = 0.01, µ0 =

0.5, µ̄0 = µ̄1 = 1.3, cf = 90, cm = 120. Here cmcfββ̄ > (µ̄0 − µ0 + α)(µ̄1 − µ0 + α) and
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DFE at (1, 0, 0) is unstable. Fig.6 shows that all populations tend to the endemic steady

state at (0.7792, 0.2208, 0.2592). Suppose a treatment program is implemented in the bridge

population of young men with a lower contact rate at c′m = 100, a lower removal rate

µ̄′
1 = 1.1, a lower transmission probability β′ = 0.005, and 20% of the infected bridge

population treated (σm = 0.2). The expression above will become negative and the DFE

will be globally asymptotically stable for S3 (see Fig.7). Hence a treatment program in this

scenario would be decidedly beneficial to the population.

We now demonstrate the possible adverse effect of an ill-planned treatment program.

Let α, β, β̄, µ0, µ̄0, µ̄1 and cm be the same as before, but cf = 80. Now the DFE is G.A.S.

in S3 (Fig.8). In other words, the disease will by itself be eradicated without any community

treatment program. However, if we target a treatment program in the bridge population

with c′m = 100, µ̄′
1 = 0.7, β′ = 0.01, and σm = 0.2, it would result in the above equivalent

expression for R̄f > 1 changing from negative to positive, creating an endemic equilibrium

which is G.A.S. in S3 − (1, 0, 0) and causing a perverse turn of the epidemic for the worse.

The example shows that if the treatment program slows down the progression to AIDS of

the treated infected males without sufficiently lowering the contact rate with susceptible core

females or the transmission probability, then it could increase the spread of the infection.

6 Concluding Remarks

Mathematical modeling of HIV transmission and treatment have suggested that lowering the

contact rate c or the transmission probability β of the infecteds is necessary for the treatment

program to be beneficial on the population level (see [16] or [18]) but is not sufficient (see

[20]). All of the above- mentioned work considered models with male gay population which

is reasonable since common sense would dictate a targeting strategy aiming toward high-

risk groups. By the same reasoning, we consider in this model a public health policy which

targets its resources at the sexually active young men or the core group of CSW’s. The results

show that if the contact rates and transmission probabilities of the treated individuals are
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sufficiently reduced, the treatment can eradicate the disease if the level of treatment (σm

or σf ) is also sufficiently high. Moreover we discussed the extreme case when the program

will adversely affect the spread of the disease. The work was presented to point out the

complicated possibilities in the design of control programs for HIV/AIDS in countries with

a large core group of sexually active individuals.
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Figure Legend

Figure 1. Simulation of a population with no treatment and with α = 0.3, β = β̄ = 0.01, cm =

15, cf = 200, µ0 = 0.1, µ̄0 = 0.2, µ̄1 = 0.4. y1-axis is the susceptible fraction in core females,

y4-axis is the untreated infected fraction in young males. DFE at (1, 0) is unstable. There

is an asymptotically stable endemic steady state at (0.7682, 0.7500).

Figure 2. Simulation of the same population in Fig. 1 but with screening and removal of the

infecteds in the female core group with σf = 0.1. DFE at (1, 0) is the unique equilibrium

and is asymptotically stable in S.

Figure 3. Simulation of a population with no treatment and with α = 1, β = β̄ = 0.1, cm =

10, cf = 100, µ0 = 1.0, µ̄0 = µ̄1 = 3.165. y1-axis is the susceptible fraction in core females,

y4-axis is the untreated infected fraction in young males. There is an locally asymptotically

stable endemic steady state at (0.8252, 0.5903) and a hyperbolic endemic equilibrium at

(0.9608, 0.1255). DFE is locally asymptotically stable.

Figure 4. Simulation of the same population in Fig. 3 but with screening and removal of the

infecteds in the female core group with σf = 0.003. Again, there is an locally asymptotically

stable endemic steady state at (0.8471, 0.5120) and a hyperbolic endemic equilibrium at

(0.9311, 0.2234). DFE is also locally asymptotically stable.

Figure 5. Simulation of the same population in Fig. 3 but with screening and removal of the

infecteds in the female core group with σf = 0.1. DFE at (1, 0) is the unique equilibrium

and is asymptotically stable in S.

Figure 6. Simulation of a population with no treatment and with α = 0.2, β = β̄ = 0.01, cf =

90, cm = 120, µ0 = 0.5, µ̄0 = µ̄1 = 1.3. x-axis is the susceptible fraction of core females, y-

axis is the untreated infected fraction of core females, and z-axis is the untreated infected

fraction in unpartnered males. DFE at (1, 0, 0) is unstable. There is a asymptotically stable

endemic steady state at (0.7792, 0.2208, 0.2592).

Figure 7. Simulation of the same population in Fig. 6 but with treatment and behaviour

change. σm = 0.2, β′ = 0.005, c′m = 90, and µ̄′
1 = 1.1. DFE is the unique equilibrium and is

asymptotically stable in S3.
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Figure 8. Simulation of a population with no treatment and with α = 0.2, β = β̄ = 0.01, cf =

80, cm = 120, µ0 = 0.5, µ̄0 = µ̄1 = 1.3. x-axis is the susceptible fraction of core females, y-

axis is the untreated infected fraction of core females, and z-axis is the untreated infected

fraction in unpartnered males. DFE is the unique equilibrium and is asymptotically stable

in S3.

Figure 9. Simulation of the same population in Fig. 8 but with treatment and behaviour

change. σm = 0.2, β′ = 0.01, c′m = 100, and µ̄′
1 = 0.7. DFE is unstable and there is an

asymptotically stable endemic steady state at (0.5997, 0.2112, 0.4342).
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