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SUMMARY

In this paper we estimate the numbers of intravenous drug users (IVDUs) and commercial sex workers
(CSWs) in Thailand infected with human immunode�ciency virus (HIV) who have not developed acquired
immunode�ciency syndrome (AIDS) directly from the semi-annual HIV serosurveillance data of Thailand
from June 1993 to June 1995. We propose a ‘generalized removal model for open populations’ for estimating
HIV-infected population size within a hidden, elusive, and perhaps high-risk population group, for all sampling
time when capture probabilities vary with time. We apply empirical Bayes methodology to the generalized
removal model for open populations by using the Gibbs sampler, a Markov chain Monte Carlo method.
No assumption on the size of the hidden population in question is needed to implement this procedure.
The statistical method proposed here requires very little computing and only a minimum of two sets of
serosurvey data to obtain an estimate, thereby providing a simple and viable option in epidemiological studies
when either powerful computing facilities or abundant sampling data are lacking. Copyright ? 2000 John
Wiley & Sons, Ltd.

1. INTRODUCTION

The explosive spread of the acquired immunode�ciency syndrome (AIDS) epidemic in Thailand
in the 1990s has been well documented (see, for example, Reference [1]). While some reports
on declining HIV prevalence have given us reason to be optimistic toward future prospects
(for example, Reference [2]), other surveys reporting on the lingering high human immuno-
de�ciency virus (HIV) seroconversion rate among high-risk groups (for example, Reference [3])
cautioned that more problems may still be ahead. The 1994 National Economic and Social Devel-
opment Board of Thailand (NESDB) Working Group on HIV=AIDS Projection [4] reported that
since 1991 the total number of new HIV infections has declined each year in Thailand. However,
a behaviour survey [5] of young army conscripts from 1991 to 1993 has reported that, although
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42 per cent of conscripts had not visited a commercial sex worker (CSW) in the year prior to
conscription, most had at least one visit during their military service. Moreover, no di�erence by
HIV-serostatus was evident in their patterns of visits to CSWs. Although recent studies indicate
a de�nite declining trend of HIV infection in the general population, the 1997 HIV sentinel data
still reports that the HIV prevalence among intravenous drug users (IVDUs) and CSWs remains
high (see Reference [6]). Hence the extent to which the e�ect of the ‘100 per cent condom
programmes’ (see Reference [7]) and subsequent intervention programmes has had on the overall
HIV prevalence in Thailand, especially among the high-risk and elusive groups (IVDUs, CSWs
etc.), is yet unclear.
It is well known that the HIV infection in Thailand �rst emerged among the IVDUs, similar

to many other countries in the world, but the speed with which the epidemic spread in the early
1990s has been attributed mainly to the large CSW population and their young male customers
(see, for example, Reference [8]). A large amount of work has been done in recent years to
study the sexual networking in Thai society (for example, References [9; 12]). However, much
still remains unknown, including the actual size of the various high-risk groups and consequently
the size of the infected population in each group. The lack of knowledge in this regard not
only hinders theoretical study of the spread of epidemic, but also leads to uncertainty in the
design of intervention policies and the implementation of health care. Given the added importance
of budgetary concerns caused by the recent �nancial crisis in Asia, it is worthwhile obtaining
theoretical estimates of the number of infected individuals in the high-risk populations in order
for the policymakers of prevention programmes to have a fuller understanding of the spread of
the epidemic and to make better use of a shrunken budget.
With the rapid growth of a world-wide AIDS epidemic in recent years, estimating the number

of HIV-infected individuals in a certain population, for example, homosexuals, prostitutes, IVDUs
etc., has become a major problem of public health concern in many countries. In a 1989 review
article [13] on methods to estimate population size of high-risk groups for HIV infection, spe-
cial attention was given to the potential use of the capture-recapture method (or multiple-record
system method in dealing with human populations, see Reference [14]) for estimating popula-
tions of IVDUs and prostitutes. Subsequent work on estimating the number of drug users includes
References [15–18]. Similar estimates for prostitutes in Glasgow using a multiple-capture method
was also carried out in Reference [19]. For a discussion on problems in the estimation of hidden
and elusive populations using the capture-recapture method see also Reference [20]. A lucid re-
view of the historical development of the capture-recapture method and its applications to human
diseases can be found in References [14; 21].
In all of the above-cited work, the emphasis has been placed on estimating the population size

of drug users or prostitutes. However, a more direct question of epidemiological importance is the
actual number of seropositives in a particular population. To that aim, Mastro et al. [18] combined
their estimated number of IVDUs in Bangkok with the results from other HIV prevalence studies
to yield an estimate of the HIV-infected IVDUs in Bangkok. Abeni et al. [22] also used data from
four large testing sites in Lazio, Italy, to generate incomplete, partially overlapping lists of HIV-
infected subjects with which they then estimated the population size of HIV-infected individuals
in Lazio in 1990.
In biological studies, it is often necessary to estimate the size of a population. Seber [23]

classi�ed populations into two categories, called ‘closed’ and ‘open’, depending on whether the
population remains unchanged during the period of investigation, or changes through such processes
as birth, mortality, emigration etc. In this work we wish to implement a procedure by which one can
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estimate the number of HIV-infected individuals in a high-risk and hard-to-count population from
two or more samples or serosurveys of the same population at di�erent sampling times. In the
1950s, the removal model was proposed by Moran [24] and Zippin [25; 26] to estimate closed
population size when each sampling results in the removal of captured animals. This model for a
closed population has been studied subsequently by Otis et al. [27], Chaiyapong and Lloyd [28] and
Yip and Fong [29]. In order to make a more precise inference, we propose a ‘generalized removal
model for open populations’ which allows only recruitment (of new HIV-infected individuals) and
deaths (removal of HIV-infected individuals due to development of AIDS) to occur during the
experiment. We use the proposed method to estimate the number of HIV-infected IVDUs and
CSWs in Thailand during the period of June 1993 to June 1995.
The rest of the paper is organized in the following manner. We describe the data used for our

estimates in this paper in Section 2. Section 3 gives the proposed empirical Bayes procedure. In
Section 4 we give the results obtained by applying our procedure to the data described in Section 2.
Finally, in Section 5, we discuss the advantages of our method as well as certain limitations in
applications.

2. HIV SENTINEL DATA OF THAILAND

The HIV serosurveillance data published by the Division of Epidemiology, Ministry of Public
Health (MOPH) of Thailand [30] consists of serosurvey data from all 76 provinces of Thailand
for IVDUs, CSWs (direct and indirect), male STDs, blood donors, and pregnant women in ANC
centres. The ‘direct’ CSWs work in brothels, while the ‘indirect’ CSWs work in commercial
establishments such as bars and massage parlours where sex can be available on request. For
each half year from June 1989 to June 1995 and every year after June 1995, health workers in
each province performed an HIV serosurvey for 100–200 individuals (if available) from each of
the above-mentioned groups. Di�erent sampling methods were employed for di�erent groups. For
example, cluster random sampling of various commercial sex establishments was used for testing
CSWs on a voluntary basis while sampling for IVDUs took place during their visits to local drug
users treatment centres run by the government. In all cases, the testing was mandatory with e�orts
to follow up the seropositive cases. Given that our aim is to estimate the size of HIV-infected
individuals in a high-risk and elusive population, it would be of little practical use to estimate
how many HIV-infected male STD patients there are in Thailand. Moreover, blood donors and
pregnant women are by no means elusive and hard to count. Hence we only consider the three
groups of IVDUs and CSWs (direct and indirect).
We wish to estimate the number of HIV-infected IVDUs and CSWs who have not progressed

to AIDS for the time period June 1993 to June 1995 by directly using data of the Thai HIV
Serosurveillance Round 9–13 taken semi-annually during that time period. Table I lists the resulting
nation-wide seroprevalence data for these three groups for the �ve samples from June 1993 to June
1995. The province-by-province data is also available from the MOPH reports. However, the high
mobility of these groups, especially the CSWs [11], renders the provincial data highly volatile
from survey to survey and di�cult to use in our estimates. We therefore con�ne ourselves to the
estimates for national-wide totals. Also note that the separate numbers for the direct and indirect
CSWs in June 1995 are not available due to a decision by MOPH after December 1994 to combine
future surveys for direct and indirect CSWs on the ground that the trend of epidemics in these
groups is well-established [31]. For every serosurveillance round, the prevalence rates for the direct
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Table I. Thai sentinel data (Round 9–13) for intravenous drug users and commercial sex workers.

Date IVDU Direct CSW Indirect CSW
HIV+ Total % HIV+ Total % HIV+ Total %

06=93 1234 3515 35.11 2731 8979 30.42 608 7041 8.64
12=93 1276 3388 37.66 2412 8170 29.52 721 7793 9.25
06=94 1033 3234 31.94 2441 8653 28.21 703 8024 8.76
12=94 346 985 35.13 1313 4014 32.71 411 4186 9.82
06=95 1235 3585 34.45 — — — — — —

— denotes not available.

CSWs obtained from the sentinel data are several times higher than the corresponding prevalence
rates of the indirect CSWs – a reasonable result since the direct CSWs working in brothels would
tend to have many more customers and be less selective when compared with their counterparts
(indirect CSWs) working in bars and massage parlours. Subsequently we decide to use the sentinel
data from June 1993 to December 1994, instead of the more recent data, to estimate the numbers
of the direct and indirect CSWs separately in order to have more accuracy in our estimates of the
CSWs. We also give estimates of the IVDUs for the same period plus the June 1995 Round, the
last time the serosurvey was taken semi-annually.

3. STATISTICAL METHOD

First note that in describing the statistical procedure throughout this section, the term ‘population’
denotes the HIV-infected individuals among the CSWs and IVDUs whose size we wish to esti-
mate. In our framework where the population size to be estimated is the number of HIV-infected
individuals within a certain hard-to-count population, there is no recapture since it is reasonable to
assume those tested positive will not be tested again. Hence the removal model is the appropriate
choice of model to work with. In each sample, numbers of subjects are selected for testing. For
example, in the 9th Round Thai sentinel data (June 1993 in Table I), 8979 subjects are selected
from the direct CSW population for testing, and 2731 tested to be HIV-infected. Using the four
sets of semi-annual data from June 1993 to December 1994 we estimate total population sizes of
HIV-infected direct CSWs from June 1993 to December 1994. The generalized removal model
for open populations proposed here can also be considered as one which gives estimates of HIV-
infected population sizes for all sampling time when capture probabilities (that is, the probability
of testing HIV-positive) vary with time. Moreover, since the sample taking would exclude anyone
who has already developed AIDS symptoms, the estimate we obtain is the number of HIV-infected
individuals who have not developed AIDS. It presents no hindrance in the assessment of the AIDS
scenario, since the size of population with AIDS symptoms can be easily counted from clinical
records.

3.1. Generalized removal model for open populations

We consider a sequence of s samples taken from the serosurvey data. Let tj be the time when the
jth sample is taken and Bj be the number of new HIV-infected individuals between time tj and
time tj+1. Assume that all subjects in the HIV-infected population just before time tj who have
not been caught in the �rst j−1 samples have the same capture probabilities Pj in the jth sample.
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We de�ne Nj be the total number of subjects in HIV-infected population just before time tj, and
Nj =B0 + · · ·+ Bj−1. The likelihood function can be obtained as follows:

L(B;P|D)∝
{

s∏
j=1

(
Nj −Mj
uj

)
Pujj (1− Pj)Nj−Mj+1

}
(1)

where D= {u1; : : : ; us}; B=(B0; : : : ; Bs−1) and P=(P1; : : : ; Ps); uj is the number of distinct HIV-
infected individuals captured in the jth sample. Therefore, Mj+1 = u1 + · · ·+ uj is the number of
distinct HIV-infected individuals captured in the �rst j samples. We call this model a generalized
removal model for open populations, due to the removal of the observed HIV-infected individuals.
We extend the removal model of Otis et al. [27] for a closed population to allow recruitment to
occur between samples. Note that it is reasonable to assume that individuals tested to be HIV-
infected in the jth sample will not be caught after jth sample. This implies that once identi�ed in
the survey, individuals will not be captured again.
The proposed model involves more parameters than the minimal su�cient statistic. Consequently,

all parameters cannot be estimated without additional restrictions, and maximum likelihood esti-
mation of the population size proves to be impossible. In order to make the population size N
(for a closed population) an identi�able parameter under maximum likelihood estimation,
Otis et al. [27] suggests letting P1 = · · ·=Ps=P or Ps−2 =Ps−1 =Ps. As it is not possible to
obtain valid estimation of the HIV-infected population by using maximum likelihood estimation
for an open population, we propose a Bayesian estimation procedure. Bayesian inference of a
population size for various models has been proposed in the literature (see, for example, Refer-
ences [32–34]). In the Bayesian setting we would wish to give prior distributions to the unknown
parameters of the model, N and P. We assume the prior of N is constant (vague prior) which is
also used by Castledine [35]. It is appropriate in cases where we only have vague prior knowl-
edge about Nj. Moreover, we assume that the priors of Pj’s are a priori independent and follows
a beta distribution Be(1; 2). The posterior distribution of N given P is a truncated negative
binomial. The complete conditional posterior distributions are given in Appendix A. Since there
are AIDS-related deaths during the process, we de�ne the semi-annual survival rate speci�c to an
HIV-infected individual between the (j−1)th and jth sample to be �. The conditional expectation
of Mj+1 and Nj+1 for the ( j + 1)th sample given Mj (the number of distinct HIV-infected indi-
viduals captured in the �rst j−1 samples) and Nj (the total number of subjects in HIV-infected
population just before time tj), respectively, are

E(Mj+1|Mj) = �Mj + uj and E(Nj+1|Nj) = �Nj + Bj (2)

The detailed derivation of (2) is given in Appendix B. This assumption is appropriate since the
majority of the IVDUs and CSWs in question are in their prime years when the natural mortality
is rather low, and also because the samples in this work span a relatively short period of time
(two and a half years). Hence we assume that the natural death rate of IVDUs and CSWs during
this time period is negligible.

3.2. Markov chain Monte Carlo approach

We utilize an empirical Bayes analysis in the proposed model by using the Gibbs sampler, a
Markov chain Monte Carlo (MCMC) method. The Gibbs sampler is a Markovian updating scheme
enabling one to obtain samples from a joint distribution via iterated sampling from full conditional
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distributions. Detailed discussions can be found elsewhere [36; 37]. Interested readers are also
referred to References [38] and [39] for a comprehensive review of the Gibbs sampler.
In order to utilize the empirical Bayes analysis and to implement the Gibbs sampler, the hyper-

parameters of Pi, namely (1; 2), are needed. We describe the procedure for choosing 1 and 2
in Appendix C. The Bayes estimates are based on Monte Carlo samples from the Gibbs sampler
run of 10 000 iterations after 2000 burn-in, and selecting every 20th sampled value. The MCMC
method is assured to converge using a procedure developed in Reference [40]. The details are
omitted to save space.

4. RESULTS

We are interested in making an inference about the population size of the HIV-infected population
for each sample. We choose the 6-month survival rate � for HIV-infected individuals (that is, the
mean probability that an infected individual will not develop AIDS during the six months between
samples) to be 95 per cent and 90 per cent. The time from HIV infection to symptomatic AIDS
(when patients usually die within a year) is approximately 8 to 10 years for gay men in the West
[41]. However, studies have indicated a much shorter time for HIV-infected individuals in the
developing countries, with reports ranging from mean incubation time of 3.5 years for a study
on infected female prostitutes in Uganda [42] to mean survival time from diagnosis to death of
7 months for patients in a hospital in suburb of Bangkok, Thailand [43]. However, many factors
inuence the results from these studies, the most prominent being that the diagnosis of infection
usually occurs at advanced stages of disease in many developing countries. For our study, a
6-month survival rate of 90 per cent would result in 3.5-year survival rate of 47.83 per cent (since
0:97 = 0:4783), while 95 per cent survival rate for 6 months implies that survival rate after 6.5
years is 51.13 per cent (0:9513 = 0:5113), resulting in median survival time of approximately 3.5
and 6.5 years, respectively. Our results will show only minor di�erences in the estimates using
the di�erent survival rates.
The results are given in Table II. For each case, Table II lists median, mean, standard error and

a 95 per cent credible interval for Nj obtained from 2.5 per cent and 97.5 per cent quantiles. Note
that in the June 1995 sentinel data the direct and indirect CSWs are combined in reporting due
to a recommendation by the Division of Epidemiology of Ministry of Public Health. In each case
the 95 per cent credible interval becomes smaller for each succeeding estimate. This is due to the
underlying feature of our method that when the di�erence between the succeeding estimates tends
to get smaller, the corresponding standard error would also become smaller as a result.
All estimates indicate an increase from the previous sample (of six months before). However,

the size of increase decreases for each of the succeeding samples for all three groups studied. This
result seems to con�rm an earlier report [4] on the decline of the number of new infections in
recent years. Table III gives the percentage increases from the previous half-year, that is

percentage increase=
Nj+1−Nj
Nj

× 100%

for all three groups. For all sampling periods studied, the percentage increases are less than the
previous one. That is, the percentage increase of the number of HIV-infected individuals from the
previous half-year period decreases for each of the half-year periods studied. Figures 1(a)–(c)
give plots of the percentage increases for these three groups (IVDUs, direct CSWs, and indirect
CSWs) at �=90 per cent and �=95 per cent.
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Figure 1. The percentage increases of the estimated number of HIV-infected IVDUs and CSWs from the
previous half-year. The solid line is for �=90 per cent and the broken line is for �=95 per cent. (a)
intravenous drug users (IVDUs); (b) direct commercial sex workers (CSWs); (c) indirect commercial sex

workers (CSWs).
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Table II. Results of estimates for HIV-infected IVDUs and CSWs.

�=90% �=95%

Median Mean SE 95% CI Median Mean SE 95% CI

IVDU
06=93 29 067 28 960 1008 26 784 30 494 29 488 29 326 1125 26 754 31 148
12=93 31 488 31 409 490 30 332 32 290 31 690 31 639 595 30 404 32 630
06=94 32 945 32 887 293 32 197 33 333 33 018 32 976 438 32 019 33 691
12=94 33 864 33 819 169 33 362 34 004 33 884 33 843 314 33 160 34 322
06=95 34 301 34 281 86 34 059 34 375 34 415 34 387 158 34 051 34 625
Direct CSW
06=93 54 595 54 461 2922 48 379 59 399 53 647 53 433 2943 46 979 58 559
12=93 60 452 60 177 2034 55 640 63 480 59 152 59 039 1894 54 844 62 208
06=94 64 157 63 994 1356 61 133 66 161 63 039 62 901 1401 59 529 65 069
12=94 66 445 66 363 776 64553 67485 65811 65 721 886 63 777 67 237
Indirect CSW
06=93 15 181 15 067 519 13 855 15 850 15 062 15 044 482 14 014 15 874
12=93 16 275 16 249 213 15 807 16 602 16 183 16 167 250 15 674 16 600
06=94 16 903 16 871 112 16 609 17 018 16 788 16 778 160 16 434 17 062
12=94 17 171 17 155 60 17 020 17 299 17 119 17 111 90 16 910 17 264

Table III. Percentage increase of numbers of HIV-infected IVDUs and CSWs from
previous half-year June 1993 to June 1995.

IVDU Direct CSW Indirect CSW
� � �

Date 90% 95% 90% 95% 90% 95%

06=93 NA NA NA NA NA NA
12=93 8.33% 7.47% 10.73% 10.26% 7.21% 7.44%
06=94 4.63% 4.19% 6.13% 6.57% 3.86% 3.74%
12=94 2.79% 2.62% 3.57% 4.40% 1.59% 1.97%
06=95 1.29% 1.57% — — — —

NA denotes not applicable.
— denotes not available.

5. CONCLUDING REMARKS

A generalized removal model for open populations is proposed to estimate the number of HIV-
infected individuals in a hidden and elusive population directly from two or more sets of serosurvey
data. The estimate does not include those who have already developed AIDS. However, this
presents no obstacle in public health policymaking since the latter data can be easily obtained
from hospital records.
The proposed model for open populations involves more parameters than the minimal su�cient

statistic and therefore all parameters are not estimable by using maximum likelihood estimation
without additional restrictions. Our Bayesian approach enables us to estimate more parameters than
observations at hand. Therefore, the non-identi�ability can be resolved in the proposed approach.
The model assumes that the number of HIV-infected individuals removed due to AIDS (by onset

of AIDS or AIDS-related death) between each sample is less than newly infected individuals during
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the same time interval. This is a reasonable assumption for HIV=AIDS due to the long incubation
period of HIV, but might not be applicable in diseases with short incubation time. Moreover, at
the time of the serosurveys (1993–1995), the HIV epidemic in Thailand was at its early stages. All
studies have shown the numbers of HIV-infected population at that time to be increasing (see, for
example, Reference [4]). Clearly this method might not be appropriate in the case of an epidemic
which has reached saturation.
We also implicitly assume the number of individuals detected to be HIV-positive but not

included in this HIV sentinal data to be negligible since this is the comprehensive national HIV
serosurveillance programme carried out by the Thai government.
The survival rate � is assumed to be constant, although in reality it varies with each individual’s

detected time since infection. If we assume � to be dependent on the time since infection, then
�i is the survival rate for the ith individual. However, we would then need detailed information
regarding each individual’s time of infection, which is not available. Moreover, the stochastic
nature of each individual’s progression to AIDS and death also requires a much more complicated
model which is beyond our scope. There are, of course, ways by which one could possibly improve
upon the assumption of constant survival rate. For example, our model can be easily modi�ed to
allow the survival rate to change from sampling period to sampling period (that is, replace � by
�j in equation (2)), thus taking account of the time-varying nature of the survival rate. However,
an estimate of the average survival rate of all infected individuals at each sampling period is also
di�cult to obtain, if not impossible.
The model assumes no natural (unrelated to AIDS) deaths between the samplings. Although the

populations under study here, namely the IVDUs and CSWs, are in general adults with generally
low natural mortality, they are also at risk for other diseases (for example, sexually transmitted
diseases) which tend to increase mortality. In applications of this model one should always keep
the time interval in which the samples are taken reasonably short. This is one reason that in this
work we did not make use of the complete serosurvey data in Thailand which started in 1989. In
applications where the intended population might have higher mortality, even shorter time intervals
would be advisable to avoid large errors in the estimates.
Back-estimating the number of elusive population from our estimate for the HIV-infected indi-

viduals in that population is also possible, when a more precise estimate for the population size is
unavailable. However, one needs to exercise caution in this endeavour as our estimate is only a
rough approximation at best. To illustrate how this can be done, we know of no reported census or
estimate of numbers of HIV-infected IVDUs or CSWs in Thailand. However, Mastro et al. [18]
estimated the number of HIV-infected IVDUs in Bangkok to be approximately 12 000 by �rst
using their 1991 data on IVDUs in Bangkok to obtain an estimated number of IVDUs in Bangkok
of 32 574. For the purpose of comparison, we use our national median for HIV-infected IVDUs
in June 1993 with �=90 per cent 29 067, which is closest in time to the 1991 estimate of [18].
Dividing 29 067 by the seroprevalence of 35.11 per cent, we arrive at an estimate of 82 789 IVDUs
in Thailand in June 1993. For further comparison with the result of Reference [18], in �scal year
1989 there were 60 323 admissions for treatment at 138 registered heroin=opiate detoxi�cation cen-
tres in Thailand, out of which 27 056 admissions are in Bangkok (see Reference [1]). Assuming
that the number of IVDUs in Bangkok maintains roughly the same proportion when compared
with the nation-wide total in June 1993, we obtain an estimate of 37 133 IVDUs in Bangkok.
Moreover, we obtain an estimate of 13 038 HIV-infected IVDUs in Bangkok for June 1993. Note,
however, that by combining Bangkok data with the rest of the country in our estimates tend to
cause an underestimate of the true number.
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One should also note that, as in all problems of estimation, the manner in which the sampling
was conducted also could have a great e�ect on the accuracy of estimates. In the case of the Thai
serosurvey data, cluster random sampling was used for CSWs while samples for IVDUs were
taken from IVDUs seeking treatment at local clinics.
Finally, due to the high degree of variation among the 76 provinces, point estimate of the national

total has only limited accuracy. However, to estimate the provincial totals separately would lead to
other (perhaps more severe) problems, one being the high mobility of the CSWs (see Reference
[11]), resulting in inaccuracy of the data from one sample to another. Hence we are limited in
our choice of estimation by these very practical considerations.
Information regarding hidden and elusive populations are di�cult to obtain (see Reference [20]).

The dilemma has proved to be even more challenging in the context of the HIV epidemic. In this
work we have developed a statistical method by which one can extract information regarding the
size of the HIV-infected population within a certain high-risk and hard-to-count group. Our results
give an estimate of the HIV-infected individuals in the IVDU and CSW groups at the end of each
sample. This allows the policy makers to set public health policies with a clear understanding
of the current direction of the epidemic. It is also worthwhile pointing out that our method is
simple to run on a personal computer and requires only a minimum of two sets of serosurvey
data in order to obtain an estimate. It provides an easily implemented and useful alternative to
estimate the magnitude of the HIV=AIDS epidemic, especially when either detailed serocensus data
or sophisticated computer hardware is not readily available.

APPENDIX A: CONDITIONAL POSTERIOR DISTRIBUTIONS

For the likelihood function (1) and prior distributions described in Section 3.1, the conditional
posterior distributions are given by

�(P |N ;D) =
s∏
j=1
Be(uj + 1; Nj −Mj+1 + 2) (A1)

�(Nj |N(−j);P;D) =
(Nj−Mj

uj

)
Pujj (1− Pj)Nj−Mj+1∑Nj+1

Nj=max{Nj−1 ;Mj+1}
(Nj−Mj

uj

)
Pujj (1− Pj)Nj−Mj+1

=

((Nj−Mj+1)+(uj+1)−1
uj

)
Puj+1j (1− Pj)Nj−Mj+1∑Nj+1

Nj=max{Nj−1 ;Mj+1}
((Nj−Mj+1)+(uj+1)−1

uj

)
Puj+1j (1− Pj)Nj−Mj+1

(A2)

where N(−j) denotes the vector N with the Nj deleted. (Nj −Mj+1) follows a truncated negative
binomial with parameters uj+1 and Pj and Nj−16Nj6Nj+1. Subsequently one can easily implement
the Gibbs sampler to generate (Nj−Mj+1) from the truncated negative binomial in equation (A2),
and therefore the estimates of Nj can be obtained. We could also use Je�reys’ prior (see References

[35; 34]), �(N)=
s∏
j=1
(1=Nj), in which case the conditional posterior of Nj becomes

�(Nj |N(−j);P;D) =
1
Nj

(Nj−Mj
uj

)
Pujj (1− Pj)Nj−Mj+1∑Nj+1

x=max{Nj−1 ;Mj+1}
1
x

(x−Mj
uj

)
Pujj (1− Pj)Nj−Mj+1

Copyright ? 2000 John Wiley & Sons, Ltd. Statist. Med. 2000; 19:3095–3108



ESTIMATING HIV-INFECTED POPULATION SIZE IN ELUSIVE POPULATIONS 3105

However, this prior leads to a much more complicated posterior form than that of equation (A2)
(and those used in References [35; 34]), therefore it is not readily implementable in our scheme.
It remains an open question to consider other types of priors and to investigate the sensitivity of
the posterior distribution of Nj.
Estimation of the marginal posterior densities for the (N ;P) is then achieved by repeated sam-

pling from (A1) and (A2) alternately, conditional upon current estimates of other unknown pa-
rameters, until convergence is achieved.

APPENDIX B: DERIVATION OF EQUATION (2)

It is assumed that no natural (unrelated to AIDS) deaths occurred in the process in a births-only
model considered in Reference [33]. That is

Mj+1 =Mj + uj (A3)

Nj+1 =Nj + Bj (A4)

where Bj is the number of new HIV infections between the (j − 1)th and jth sample. This
assumption is plausible when the time span between the samples is short, mainly due to the
fact that the expected survival time of an uninfected individual is signi�cantly longer than that
of an HIV-infected individual. However, since there are AIDS-related deaths during the process,
equations (A3) and (A4) are no longer valid. Hence we de�ne the semi-annual survival rate
speci�c to an HIV-infected individual between the (j − 1)th and jth sample to be �.
Suppose that M (s)

j and N (s)j denote the respective numbers of survivals of Mj and Nj between the

(j − 1)th and jth sample. It follows that M (s)
j |Mj ∼Bin(Mj; �) and N (s)j |Nj ∼Bin(Nj; �), where

Bin denotes a binomial distribution. Moreover, Nj+1 =N
(s)
j +Bj and Mj+1 =M

(s)
j + uj. We assume

that Nj6Nj+1, that is, the number of AIDS-related death is less than the number of new HIV
infections. In particular, N (s)j and M (s)

j are random variables and are unobservable. Given the

values of Mj and Nj, we can estimate M
(s)
j and N (s)j by their conditional expectations. That is, �Mj

and �Nj are estimates of M
(s)
j and N (s)j , respectively. It follows that the conditional expectation of

Mj+1 and Nj+1 for the (j + 1)th sample given Mj and Nj, respectively, are

E(Mj+1 |Mj)=�Mj + uj and E(Nj+1 |Nj)=�Nj + Bj

APPENDIX C: THE HYPERPARAMETERS (2; 2) of Pi

In order to choose the value for 1 and 2, we assume that Pj =Pej, where P is a constant and ej
is the sample size of the jth sampling. That is, the capture probability in jth sample is proportional
to the jth sample size.
We adopt the idea of Reference [44] for estimating the population size in a closed population

in a capture-recapture model. If Pj follows Beta(1; 2), then the expectation and coe�cient of
variation of Pj are 1=(1 + 2) and

√{2=(1(1 + 2 + 1))}, respectively. Moreover
E(u1 |P1; : : : ; Ps; N1) =N1P1
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E(u2 |P1; : : : ; Ps; N1) = (N1(1− P1)�+ B1)P2

=N1

(
(1− P1)�+ B1

N1

)
P2 (A5)

Under the assumption of Pj =Pej, we have

E(u2 |P1; : : : ; Ps; N1)e1
E(u1 |P1; : : : ; Ps; N1)e2 =

(
(1− P1)�+ B1

N1

)

When �=1 and B1 = 0

N1 =
E(u1 |P1; : : : ; Ps; N1)
1− E(u2 | P1 ;:::; Ps; N1)e1

E(u1 | P1 ;:::; Ps; N1)e2

Therefore

E(P1) =
E(u1)
N1

∼ 1− E(u2 |N1)e2
E(u1 |N1)e1

Since Pj =Pej, Pj and ej have the same coe�cient variation. We can therefore solve for 1 and 2.
If � 6=1 and B1 6=0, then

E(u2 |P1; : : : ; Ps; N1)e1
E(u1 |P1; : : : ; Ps; N1)e2 =

(
(1− P1)�+ B1

N1

)

=
(
(1− P1) +

{
(1− P1)(�− 1) + B1

N1

})

Let �∗= [(1 − P1)(N1(� − 1) + B1) + P1B1]=N1. Under the assumption of Nj6Nj+1, we have
(1− P1)(Nj(�− 1) + Bj)¿0 and it follows that �∗¿0.
Moreover

1− E(u2 |P1; : : : ; Ps; N1)e1
E(u1 |P1; : : : ; Ps; N1)e2 = 1−

(
(1− P1)�+ B1

N1

)

= 1−
(
(1− P1) + (1− P1)(�− 1) + B1

N1

)

= P1 − (1− P1){N1(�− 1) + B1}+ P1B1
N1

= P1 − �∗
Hence

1
1 + 2

¡ 1− E(u2 |N1)e2
E(u1 |N1)e1

Therefore when the ratio of �∗ to 1=(1 + 2) is small, we can use the values of 1 and 2
computed with equation (A5) as an approximate choice of 1 and 2.
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