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Abstract. In this work, we propose a model for heterosexual transmission of HIV/AIDS
in a population of varying size with an intervention program in which treatment and/or be-
havior change of the infecteds occur as an increasing function of the density of the infected
class in the population. This assumption has socio-economic implications which is important
for public health considerations since density-dependent treatment/behavior change may be
more cost-saving than a program where treatment/behavior change occurs linearly with re-
spect to the number of infecteds. We will make use of the conservation law of total sexual
contacts which enables us to reduce the two-sex model to a simpler one-sex formulation. An-
alytical results will be given. Unlike a similar model with linear treatment/behavior change
in Hsieh (1996) where conditions were obtained for the eradication of disease, we will show
that density-dependent treatment/behavior change cannot eradicate the disease if the dis-
ease is able to persist without any treatment/behavior change. This work demonstrates the
need to further understand how treatment/behavior change occurs in a society with varying
population.

1. Introduction

The worldwide spread of the AIDS epidemic has been far reaching in the last de-
cade. While in the late 1970s and early 1980s AIDS cases were confined mostly
to the homosexual men and IV drug users in North America and Europe, there
seems to be little evidence that the disease has spread to the general heterosexual
population in these regions after more than a decade and half. However there are
convincing signs that HIV/AIDS has yet to do its greatest harm, especially in de-
veloping nations in Africa, Asia, and Latin America (see, e.g. Sittitrai and Brown
1992, Brown and Xenos 1994, and Chin 1995). It is also important that, contrary to
the situation in the developed countries, heterosexual transmission is the principle
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mode of infection in Africa and Asia (see e.g. Anderson et al. 1991, Sittitrai and
Brown 1992, or Brown and Xenos 1994).

Early epidemiological models of sexually transmitted diseases were studied by
DietzandHadeler(1988)andWaldstätter(1989)usingasimpletwo-sexmodel.Other
studies of heterosexual transmission models of HIV include Anderson et al. (1988),
May et al. (1988a, b), LePont and Blower (1991), Lin et al. (1993), and Busenberg
et al. (1995). Theoretical studies in the past on control measures for the transmission
of HIV/AIDS using mathematical models include Scalia-Tomba (1991) on effect of
behavior change on spread of HIV, Hsieh (1991) on screening and removal of HIV
positives,Anderson,Gupta,andMay(1991)andHsiehandVelasco-Hernandez(1995)
on community-wide treatment of HIV, and Velasco-Hernandez and Hsieh (1994) on
effect of treatment and behavioral change. In all of the above-mentioned work on
treatment and/or behavior change, only homosexual transmission is considered.
Moreover, a constant population size is assumed which might be inappropriate for
communitieswherethepopulationsizeisvarying.Morerecently,Velasco-Hernandez
et al. (1996) studied theeffectof treatmentandbehaviorchangeusingamathematical
model with prevalence-dependence recruitment into the core group.

In Hsieh (1996), a model is proposed for heterosexual spread of HIV in a vary-
ing population with linear treatment/behavior change rate of the HIV infecteds. It
was shown analytically that thresholds exist for the elimination of endemic frac-
tions and for the total eradication of the disease in the population. Linear rate of
change for treatment and/or behavior change of the infecteds were also used in
Scalia-Tomba (1991) or Anderson, Gupta, and May (1991). In this work, we will
use a nonlinear density-dependent treatment/behavior change rate which describes
a different, and possibly more cost-effective, control strategy. The motivation for
this nonlinearity assumption is two-fold: (i) It has been documented that sex behav-
ior changes with HIV prevalence (or knowledge about prevalence) in the untreated
population (Miller et al. 1990); (ii) The number of individuals to be treated is al-
ways less than that of the linear model, thus results in a less costly program. Our
aim is to compare theoretically the effects and cost-effectiveness of different pre-
vention strategies. In this case the reduction to a one-sex model is possible under a
well-known conservation law for total number of contacts. We will show that this
nonlinearity significantly alters the dynamics of the model in question and more
crucially, makes the eradication of the disease impossible, given that the disease
will persist without any interventions. More precisely, we will prove analytical-
ly that there is no threshold for the elimination of the endemic fractions, given
that the endemic fractions would persist without any treatment or behavior change
occurring. Thus the density-dependent intervention program has no effect on the
persistence of endemic fractions.

The model is given in Section 2 along with the reduction to simpler one-sex
formulation using a conservation of contacts assumption which simply assumes
that each heterosexual contact involves only one male and one female. Section 3
will be devoted to the analysis of reduced one-sex model for treatment. Biological
interpretations of the resulting threshold parameters for persistence of the epidemic
and the population size will be gives at the end of the section. Finally, we will give
general remarks in Section 4.
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2. Model formulation and reduction to one-sex problem

To derive the model equations with treatment, the active population in each sex
is divided into three classes, Sj (susceptibles), Uj (untreated infecteds), and Tj

(treated infecteds) with j = f,m denoting female and male, respectively. The
untreated infecteds are the infecteds who have not been detected by the screening
program and therefore are not under treatment. The treated infecteds are those
under treatment but have not yet developed full-blown AIDS and hence are still
sexually active. Moreover, Nj = Sj + Uj + Tj is the total population size for each
sex.

The removal rate not due to AIDS is the same for male or female, denoted by
µ > 0. The assumption of proportional recruitment is employed in our model
to reflect the varying population size prevalent in many developing nations. The
recruitment of new males and females into the population is assumed to be propor-
tional to the total population sizeN = Nf +Nm at a constant rate bj > 0, j = m, f ,
respectively. Moreover, the disease is assumed to be transmitted by heterosexual
contact only since our focus is on that of heterosexual transmission of HIV. We
also assume cj , j = f,m, is the average number of contacts by individuals of
sex j with individuals of opposite sex per unit time which does not change with
treatment. (For related discussions on the assumption of constant contact rates, see
LePont and Blower 1991 or Busenberg et al. 1995). βj is the probability of trans-
mission by an untreated infective of sex j ; and β ′

j is the corresponding probability
of transmission for the treated infecteds which is assumed to be less than that of the
untreated infecteds. The reason for the last assumption is that the treatment, which
could include educational programs, may result in a lower transmission probability
by the treated infecteds (see e.g. de Wit and van Griensven 1994). Some treatment
might even possibly reduce the infectivity of the patient, although that is yet in-
conclusive. We could, but will not, also use a different contact rate for the treated
infecteds which would result in a much more complicated system (see discussion
in Hsieh 1996). The incidence rate is thus Bj (t)Sj , j = f,m, where

Bf (t) = cf
βmUm + β ′

mTm

Nm

(1)

Bm(t) = cm
βf Uf + β ′

f Tf

Nf

(2)

We also assume ν > 0 is the AIDS-related removal rate. Similar to the model in
Hsieh (1996), we assume the treatment has little effect on AIDS-related removal
since it is still unclear whether medical treatment, e.g. by zidovudine, actually im-
proves survival (Swanson et al. 1994). Assuming proportionate mixing, the earlier
assumption of constant contact rates allows us to arrive at the following simple
balance law (see Busenberg and Castillo-Chavez 1991 or Castillo-Chavez and Bu-
senberg 1991 for general discussions)

cf Nf = cmNm, (3)
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a consistency condition which simply states that total contacts for males and females
must be equal at all time. For detailed discussion on the modeling implications of
this condition, see Busenberg et al. (1995).

Finally, we assume the recruitment of new males and females into the pop-
ulation to be bfN and bmN , respectively. That is, they are proportional to the
total population N with constants of proportionality bm = b/(1 + cm/cf ) and
bf = b/(1 + cf /cm). To justify the above expressions for bm and bf , note that the
consistency condition (3) implies that Nm/Nf = cf /cm at all time. To maintain
such proportion it is intuitive to assume that, if cf is larger than cm the recruitment
of males bm must be larger than the recruitment of females bf , and vice versa. In
the special case when cf = cm, we would have bm = bf = b/2.

As a consequence of our expressions for bf and bm, the total recruitment into
the sexually active population is bmN + bfN = bN . Thus b is the constant of
proportionality for recruitment of new individuals (male or female) into the total
population. Moreover, the consistency condition implies N = (1 + cm/cf )Nm =
(1 + cf /cm)Nf which allows us to rewrite the recruitment rates in the following
form:

bmN = bNm, bfN = bNf .

Similar recruitment terms were also used in the models of Lin et al. (1993) and
Hsieh (1996). The resulting model equations are:

S′
j = bNj − Bj (t)Sj − µSj , (4)

U ′
j = Bj (t)Sj − (µ + ν)Uj − σ̄j (Uj , Nj ), (5)

T ′
j = σ̄j (Uj , Nj ) − (µ + ν)Tj , j = f,m. (6)

The number of infecteds detected at each time unit, σ̄j (Uj ,Nj ) depends on
the population size of the yet untreated infecteds as well as the prevalence of HIV
infecteds among each sex. Clearly we must have σ̄j ≥ 0 and σ̄j (0, Nj ) = 0, it fol-
lows that all nonnegative initial data lead to nonnegative solutions and the problem
is well-posed. In this work we let σ̄j (Uj ,Nj ) = σjU

2
j /Nj , where σj is a positive

constant, be the rate at which infecteds are taken into treatment. Note that the pre-
viously mentioned conditions imposed on σ̄j , namely, σ̄j ≥ 0 and σ̄j

(
0, Nj

) = 0,
are clearly satisfied. Here σj is the product of the effort of screening and the fraction
of infecteds that can be screened out and taken into treatment, given a population
of infecteds. Hence it can be seen as a measure of the effectiveness of the program
which can theoretically be greater than one. On the other hand, the function σ̄j

increases as either Uj increases or
Uj

Nj

increases, therefore the number of infecteds

taken into treatment or show a change in behavior increases with an increase in
prevalence of HIV in the population (as documented by, among others, Miller et al.
1990). This describes a density-dependent treatment program where the treatment
rate is low when HIV prevalence is low in the population. It approaches a linear
increase (as a function of Uj ) only when the infecteds become dominant in the
population. Clearly this is a much more cost-effective program than that of linear
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treatment rate in Hsieh (1996). Therefore this model takes into account of the so-
cio-economic factors which could influence the design of public health policy. We
would like to find out in this work if it is just as effective.

Furthermore, the use of different σj for each sex makes it possible to consider
a targeting strategy based on difference in sex. It is a valid consideration since it
has been reported that male-to-female HIV transmission rate is much higher than
the female-to-male transmission rate (e. g. Padian 1991).

The following result on reduction to one-sex model was given in Hsieh (1996):

Theorem 2.1. Given Equation (3), the two-sex problem (4)–(6) can be reduced to
the equivalent one-sex problem:

S′
f = bNf − cmSf

βf Uf + β ′
f Tf

Nf

− µSf , (7)

U ′
f = cmSf

βf Uf + β ′
f Tf

Nf

− (µ + ν)Uf − σ̄f (Uf ,Nf ), (8)

T ′
f = σ(Uf ,Nf ) − (µ + ν)Tf . (9)

Note that all variables and parameters in (7)–(9) are of the female class except
for the contact rate of males cm in (7)–(8) which is a constant parameter in our
model. This enables us to make the reduction to one-sex problem. This reduction
to a one-sex model shows that, under the assumptions of constant contact rates and
conservation of total contacts given here, targeting the treatment at either sex is
viable in the sense that we need only to consider the dynamics of one-sex model.
Of course, one could also reduce to the male sex. For further biological implications
one can deduce from this reduction and a discussion on previous work on reduction
of two-sex model, see Hsieh (1996).

3. The model with treatment and behavior change

In this section, we consider System (7)–(9) where we assume the detected infecteds
are taken into treatment which leads to a change in either sexual behavior (number
of contacts), transmission probability, and/or incubation time. Note that, under the
conditions given in Section 2, the reduced one-sex model implies implicitly that the
ratio σf /σm does not affect the dynamics of the system. Thus the model in (7)–(9)
becomes (dropping the subscripts):

S′ = bN − S
cβU + cβ ′T

N
− µS, (10)

U ′ = S
cβU + cβ ′T

N
− (µ + ν)U − σ

U2

N
, (11)

T ′ = σU2

N
− (µ + ν)T . (12)
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Let s = S

N
, u = U

N
, t = T

N
, we get the reduced system for the proportions in the

set S = {(s, u) | s ≥ 0, u ≥ 0, s + u ≤ 1}:

s′ = b(1 − s) − s
[
(1 − s)(cβ ′ − ν) + cu(β − β ′)

]
, (13)

u′ = cs
[
β ′(1 − s) + u(β − β ′)

] − σu2 − u(b + νs), (14)

When σ = 0, we recover the case of no screening in Section 3 of Hsieh (1996)
where b + ν ≥ cβ implies the disease-free state is globally attracting. Therefore
we only need to consider the relevant case of b+ν < cβ and σ > 0. Since we also
assume that treatment decreases transmission probability, it follows that β ′ < β.
Under these assumptions, we proceed with our analysis.

In order to discuss the equilibrium points of the planar system (13)–(14), we
first consider the range of (s, u) for the system. It is trivial to show that S is invariant
for System (13)–(14). We now give the following lemma.

Lemma 3.1. System (13)–(14) contains no nonconstant periodic solution in S.

The proof is in the Appendix, as is that of the following theorem.

Theorem 3.2. Assume that cβ > cβ ′ ≥ 0, cβ > b+ν, and 1 ≥ σ > 0. The Disease
Free Equilibrium (abbreviated DFE hereafter) at (1,0) for Equations (13)–(14) is
unstable. Moreover, there is at least one positive equilibrium in S.

We have the following result for the uniqueness and global stability of positive
equilibrium, the proof is given in detail in the Appendix.

Theorem 3.3. Suppose that cβ > b+ν and σ > 0. The DFE(1,0) for System (5.4)–
(5.5) is unstable, and there exists a unique positive equilibrium (s∗, u∗) which is
globally asymptotically stable (abbreviated G.A.S. hereafter) in S − {(1, 0)}.

For the model of population in (10)–(12), we let

R0 = cβ

b + µ
, (15)

R1 =




b

µ
, if R0 ≤ 1;

b

µ + ν(1 − s∗)
, if R0 > 1;

(16)

where R0, R1 are the threshold parameters for the population size. The expression
for R1 can be obtained by adding (10)–(12) to yield

N ′ = N [b − µ − ν(1 − s)]. (17)

Since R0 > 1, we have N ′ → N [b − µ − ν(1 − s∗)] and hence the expression
for R1 in (16).

The results can be summarized as follows:
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Table 1. Limiting values of variables N,S,U,T.

R0 R1 N → (s, µ, t) → (S, U, T ) →
> 1 < 1 0 (s∗, µ∗, 1 − s∗ − µ∗) (0,0,0)
> 1 > 1 ∞ (s∗, µ∗, 1 − s∗ − µ∗) (∞,∞,∞)

The threshold parameterR0 is the well-known basic reproduction number which
governs the asymptotic behavior of population in tending toward DFE or the endem-
ic state.R0 = cβ/(b+µ)measures the relative intensity of the disease transmission
cβ versus dilution of infective population via death µ and increase of the suscepti-
ble population through births b. The parameter R1 is the basic reproduction number
for the total population. When population tends toward DFE (R0 ≤ 1), R1 is once
again simply the relative measure of birth versus natural mortality. But when the
population tends toward endemic equilibrium (R0 > 1), R1 represents the net re-
productive rate of the population with loss of individuals through all deaths (µ and
ν ). Note that if b > µ + ν, R1 > 1 for all choices of σ and consequently all
subgroups in the population will increase without bound while maintaining the en-
demic proportions in a steady state. We also note that, unlike the model with linear
treatment rate in Hsieh (1996) where σ figures prominently in the expressions for
the threshold parameters R0 and R1, σ does not even appear in R0 and R1. Hence
we can conclude that, for the model with nonlinear treatment rate, the treatment
program σ has no effect at all on the asymptotic behavior of either the proportions
or the population size.

4. Concluding remarks

In recent years, the search for an effective intervention/prevention approach to
reduce the spread of HIV/AIDS has become a main focal point for national govern-
ments and international organizations all over the world. Some studies concentrate
on behavioral interventions (e.g. DiClemente and Peterson 1994, Oakley et al.
1995), some work on aspects such as clinical treatment or vaccine trials (Weniger
1994), yet others attempt to propose measurement for evaluating the efficacy of
prevention programs (e.g. Choi and Coates 1994, Konings et al. 1995). While cer-
tain programs have been shown to successfully reduce rates of new infections in
some populations (DiClemente and Peterson 1994, Stryker et al. 1995), the question
remains unanswered as to what a particular society can do to effectively combat
the epidemic. It is important to understand the effects of a prevention program
since we are always limited by the resources available to us. How to distribute
the limited resources with efficiency is a difficult task and at times a controversial
issue. Moreover, the impact of the program is also sensitive to the timing for the
implementation of the program, the targeting strategy, and the availability of data
prior to implementation.

In this work we propose a simple mathematical model for heterosexual trans-
mission of HIV/AIDS with community treatment programs which screen the pop-
ulation and put those detected in a treatment program which could prolong the
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patients’ survival time while at the same time attempt to reduce their actual infec-
tivity through behavior change which reduces their contact rate or through reduction
of their transmission probability. The results show that an intervention program with
density-dependent treatment/behavior change rate, while less costly than that of a
linear treatment rate which has been shown (Hsieh 1996) that it could help eradi-
cate the disease, cannot change the course of the epidemic if the disease was to be
able to spread without treatment/behavior change. This underscore the importance
of further studies regarding the relative cost-effectiveness of different prevention
programs.

The results for reduction to one-sex model also show that, under the condition
of conservation of total contacts given for our model, a targeting strategy aiming
prevention program at either sex is viable in the sense that we need only to consider
the dynamics of one-sex model but the choice of either sex makes no difference in
the outcome.

As a final remark, much of this work is based on the assumption of conserva-
tion of total contacts, a biologically reasonable assumption. However, this simple
conservation law is, in turn, based on the assumptions of proportionate mixing and,
more critically, constant contact rates (cm and cf ). The validity of both assump-
tions must be examined with more in-depth behavioral studies. Unfortunately, such
studies has been so far inconclusive in the Third World setting. Hence we offer this
work as a theoretical study which can be improved upon when more information
is available in the future.

Appendix

Proof of Lemma 3.1. We make use of the Bendixson-Dulac criterion with weight

function g(s, u) = 1

su
. ��

Proof of Theorem 3.2. For local stability, we consider the Jacobian

J =
[ −b + u(cβ − cβ ′) − (1 − 2s)(cβ ′ − ν) −s(cβ − cβ ′)

(1 − 2s)cβ ′ + u(cβ − ν − cβ ′) s(cβ − ν − cβ ′) − 2σu − b

]
.

At DFE (1,0), the Jacobian matrix has eigenvalues of λ = cβ − b− ν,−b− ν.
Since λ+ = cβ − b − ν > 0, (1, 0) is unstable for S. Hence the existence of pos-
itive fixed point in the invariant set S follows immediately from the nonexistence
of periodic solution and Poincaré-Bendixson Theorem. ��

Proof of Theorem 3.3. Given Lemma 3.1 and Theorem 3.2, it suffices to prove the
uniqueness of the positive stationary point in S, we have to consider the following
equations:

f (s, u) = b(1 − s) − s
[
(1 − s)(cβ ′ − ν) + u(cβ − cβ ′)

] = 0,

g(s, u) = s
[
cβ ′(1 − s) + (cβ − cβ ′)u

] − σu2 − u [b + νs] = 0.
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The problem is equivalent to proving the uniqueness of intersection point of two
quadratic curves in the interior of S. We denote the curve satisfying the first equa-
tion by L1 and the curve satisfying the second equation by L2. We first show that
L1 is a hyperbola in the (s, u)-plane.

Diagonalize the quadratic form

f (s, u) = (cβ ′ − ν)s2 − (cβ − cβ ′)su + (ν − b − cβ ′)s + b,

we obtain the transfer matrix

M =
[
cβ ′ − ν

−(cβ−cβ ′)
2−(cβ−cβ ′)

2 0

]

which has eigenvalues

λ± = (cβ ′ − ν) ±
√
(cβ ′ − ν)2 + (cβ − cβ ′)2

2
.

Since λ− < 0 < λ+, the quadratic curve L1 is a hyperbola.
Next we locate the intersection points of L1 and the boundary of S:

(i) When s = 0, f (s, u) = b �= 0. Therefore, the hyperbola L1 does not cross
u-axis.

(ii) The intersection points of L1 and s-axis are the points A= (1, 0) and B=
( b
ν−cβ ′ , 0).

(iii) The intersection points of L1 and the line s + u = 1 are the points A and

C = (
b

cβ − ν
,
cβ − b − ν

cβ − ν
).

Note that 0 < b
cβ−ν

< 1 and 0 <
cβ−b−ν
cβ−ν

< 1.

From (i)–(iii), the hyperbola L1 has a branch that lies completely in the quad-
rants II ∪ III, and a branch that lies completely in the quadrants I ∪ IV passing
through the points A, B, and C.

Similarly, we diagonalize the quadratic form

g(s, u) = −cβ ′s2 + (cβ − cβ ′ − ν)su − σu2 + cβ ′s − bu

with transfer matrix

M =
[

−cβ ′ (cβ−cβ ′−ν)
2

(cβ−cβ ′−ν)
2 −σ

]

whose eigenvalues are

λ± = (−cβ ′ + σ) ±
√
(cβ ′ + σ)2 − 4cβ ′σ + (cβ − cβ ′ − ν)2

2
.

Let % = 4cβ ′σ − (cβ − cβ ′ − ν)2,
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if % > 0, L2 is an ellipse,
if % = 0, L2 is a parabola,
if % < 0, L2 is a hyperbola.

The intersection points of L2 and the boundary of S are considered in the
following cases.

(i) When s = 0, the intersection points of L2 and u-axis are D= (0, 0) and
E= (0,−b/σ).

(ii) The intersection points of L2 and s-axis are A and D.
(iii) The intersection points of L2 and the line s + u = 1 are A and

F = (
(b + σ)

cβ + σ − ν
,
cβ − b − ν

cβ + σ − ν
).

Here we also note that

0 <
b

cβ − ν
<

(b + σ)

cβ + σ − ν
< 1

and

0 <
cβ − b − ν

cβ + σ − ν
<

cβ − b − ν

cβ − ν
< 1

.
When L2 is an ellipse or a parabola, it can be easily seen that L1 and L2 have

only one intersection point in the interior of S.
WhenL2 is a hyperbola, we claim that the points D and F lie on the same branch

of the hyperbola L2. This can be checked by finding the derivative du
ds

|(0,0). Taking
derivative d

ds
on both sides of the equation

−cβ ′s2 + (cβ − cβ ′ − ν)su − σu2 + cβ ′s − bu = 0,

one obtains

−2cβ ′s + (cβ − cβ ′ − ν)u + (cβ − cβ ′ − ν)s
du

ds
− 2σu

du

ds
+ cβ − b

du

ds
= 0.

For (s, u) = (0, 0), du
ds

|(0,0)= cβ ′
b

> 0.
Therefore one branch of the hyperbola L2 that passes through D = (0, 0) will

point toward quadrant I. Hence, D and F must lie on the same branch of L2 and this
branch intersects L1 at one point in the interior of S. Therefore L1 and L2 intersect
at only one point in the interior of S. ��
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