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Abstract. Early studies of the novel swine-origin 2009 influenza A (H1N1) epidemic indicate
clinical attack rates in children much higher than in adults. Non-medical interventions such as
school closings are constrained by their large socio-economic costs. Here we develop a mathemat-
ical model to ascertain the roles of pre-symptomatic influenza transmission as well as symptoms
surveillance of children to assess the utility of school closures. Our model analysis indicates that
school closings are advisable when pre-symptomatic transmission is significant or when removal of
symptomatic children is inefficient. Our objective is to provide a rational basis for school closings
decisions dependent on virulence characteristics and local surveillance implementation, applicable
to the current epidemic and future epidemics.
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1. Introduction
Prior statistical analyses and models of school closings address several issues, including their ef-
fects on attack rates in school children and in the community ([4],[7]), buying time for a strain-
specific vaccine ([32]), the impact of the timing and duration of school closure and flow-on ef-
fects on other social contacts ([31]), and household responses and costs ([24],[40]). Our model
is distinguished from these in its focus on the contribution of pre-symptomatic (or early symp-
tomatic) children to disease transmission. Asymptomatic influenza infection occurs regularly ([2],
[16],[29]), accounting for up to one-third of all infections ([33],[34],[37],[38],[39]). Similarly,
early (pre-symptomatic) infectivity is well documented ([18]). One well-investigated case of pre-
symptomatic influenza transmission ([42]) is partially responsible for World Health Organization
recommendations on non-pharmaceutical measures to prevent such transmission in pandemic set-
tings ([45]). In the structured settings of schools, pre-symptomatic infection is a particularly im-
portant driver of school closure policies.

Several approaches have been used to model transmission in asymptomatic or subclinically
infected persons ([1],[15],[21],[23],[27],[28],[44]). Our approach is a deterministic model, which
uses partial differential equations incorporating an age of infection variable beginning at the mo-
ment of inoculation and following the disease course through its phases in each individual. In
particular, the age of infection variable allows efficient tracking of both (i) the pre-infectious and
infectious phases, and (ii) the pre-symptomatic and symptomatic phases. We investigate the criti-
cal case that (i) and (ii) are not coincident, but overlap during which time children are infectious,
but are not yet symptomatic, or for practical purposes, cannot be identified as symptomatic.

We examine epidemic outcome scenarios by varying two key model parameters: (i) the overlap
period of the pre-symptomatic and infectious phases from 0 to 24 h, and (ii) the efficiency of
removing symptomatic children from the school environment from 0 to 100% per day. This second
parameter is available to school and public health officials for surveillance, identification, isolation,
send-home, and stay-at-home policies ([4]); its interpretation is context-dependent, but meaningful
in recommending and implementing policies.

2. The SEIR Age of Infection Model
The model (Figure 1) consists of school children divided into susceptible S(t), exposed (latent)
E(t) infectious I(t), and removed classes R(t) at time t, with the key feature that infected in-
dividuals are structured by a continuous variable a corresponding to time since inoculation, and
the latent, infectious, pre-symptomatic, and symptomatic stages of the disease are modeled by the
disease age of infected individuals. The model equations and analysis are given in the Appendix.
The assumptions of the model are that:

(1) The population consists of school children; initially there are 10,000 susceptible children
with a small number infected. The model is of standard incidence form ([19]), so the results are
valid for any number of initial susceptibles with a given parameterization. The model is thus
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Figure 1: Schematic of the SEIR compartment model. Susceptible children become infected,
immediately enter the exposed (latent) class in which they are not yet infectious, and then enter the
infectious class. Symptomatic children may exit to the removed class, where they are no longer
susceptible.

applicable to an individual small school or a large urban school district.

(2) The dynamics of the model are localized to the population of school children. Infection of
children outside of the school environment is not incorporated specifically, but can be considered
included.

(3) A threshold of the infectious phase, denoted by Ti, is the time during the disease course at
which infected children become infectious (Figure 2). The infectious period lasts for time Fi, so
that children are infectious from Ti to Ti + Fi.

(4) A threshold of the symptomatic phase, denoted by Ts, is the time during the disease course
at which infected children manifest identifiable systemic or respiratory symptoms (Figure 2). The
symptomatic phase lasts from Ts to Ti + Fi. We assume that Ts ≥ Ti.

(5) The removal of symptomatic infected children is Rsym% per day after the threshold of the
symptomatic period Ts, but 0% per day before Ts. This percentage takes into account time lags in
identifying presentation of symptoms and isolation of children from the school, both at home by
parents and at school by officials.

The thresholds in these assumptions should be viewed as effective average values for typical
infected individuals. Their designations are not precise, but rather simplified estimates based on
available data such as viral shedding and immune response levels ([18]). Viral shedding before
symptoms on-set appears higher in children than in adults ([11],[17],[43]). For isolation of infected
children in schools, identification of symptoms is largely equated to fever and coughing, which are
problematic as markers at a practical level. Carrat et al. ([5]) showed that viral shedding and total
symptoms score overlap over the disease course in adult volunteer studies. However, those data
show an initial advance of viral shedding (peak at 2.0 days) compared to total symptoms score
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Figure 2: The age of infection-dependent transmission rate β(a). Infectiousness begins at the
threshold Ti, peaks, and then falls to near 0 at time Ti +Fi. The symptomatic period begins at time
Ts and lasts until time Ti + Fi. The period of pre-symptomatic infectiousness is the gray bar be-
tween infection Ti and Ts. In the baseline simulation the period of pre-symptomatic infectiousness
is 0.25 days.

(peak at 3.0 days). Since the viral shedding measurements range over many orders of magnitude,
assigning threshold values is justified. Although the efficiency of viral shedding for transmission
from asymptomatic hosts is unknown ([9]), the contribution of pre-symptomatic infectious children
to transmission may be critical in school settings. Formulas for the epidemic reproduction number
R0 and the daily and cumulative epidemic attack percentages AR under these assumptions are
given in the Appendix.

3. The Baseline Model
We specify the parameters of the model at baseline (Table 1) with values supported by studies
of past influenza epidemics ([5],[6],[9],[14]) as well as recent reports of the current epidemic,
with extrapolation to the context of schoolchildren ([13]). An advantage of this approach is that
its parameterization is relatively manageable within a range of acceptable values, which can be
adjusted as new information develops.

We use the adult volunteer data in [5] as the basis for our baseline transmission parameter β(a)
(Figure 2). The choice of β(a) is also determined by its compatibility with an epidemic reproduc-
tion number R0 = 1.29 and an attack rate = 41%, that are within the range of values reported for
the early outbreak in Mexico ([13]) and consistent with past influenza outbreaks with a new strain
circulating in the population. The speed at which influenza spreads is not only dependent on a
high R0, but also on the serial interval ([26],[30]). The choice of 70%/day removal rate of children
assumes a relatively efficient process for their identification and being sent home. Clearly, this per-
centage will vary considerably, which provides an opportunity for social distancing intervention
strategy. The baseline simulation begins with 10 infected students equi-distributed in the age of
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Table 1: Baseline parameters of the model
Parameter Parameter description Baseline value

Ti infectiousness threshold 0.75 days [5]
Ts symptoms threshold 1.0 day [5]
Fi length of infectiousness period 4.0 days [5]

β(a) infection age transmission rate β(a) =

{
0.0, a ≤ Ti

10−3(a− Ti)e
−2.0(a−Ti), a > Ti

Rsym removal of symptomatic children 70% per day

µ(a) removal rate of infected children µ(a) =

{
0.0, a ≤ Ts

−log[1.0− .01Rsym], a > Ts

infection range [0, Ti + Fi] in a population of 10,000 susceptible students. The baseline simulation
is given in Figure 3 and shows an epidemic that lasts approximately 60 days, strongly increases
around day 25, and develops with characteristics similar to other influenza outbreaks in school-age
populations ([7]).
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Figure 3: The susceptible population S(t) (Panel A), the cumulative number of cases C(t) (Panel
B), the rates of change per day of the exposed population E(t) (Panel C) and infectious population
I(t) (Panel D) in the baseline simulation. The epidemic begins with the introduction of 10 infected
children into the school population. The duration of the epidemic is approximately 60 days.

4. Simulations of the Model with Variable Pre-symptomatic In-
fectious Periods and Symptomatic Children Removal Rates

We vary the length of the pre-symptomatic infectious period Ts−Ti from 0.0 to 1.0 days, by holding
the threshold of infectiousness fixed at the baseline value Ti = 0.75 days and varying the threshold
of symptoms Ts from 0.75 days to 1.75 days, and we vary the removal rate of symptomatic children
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from Rsym = 0% to 100% per day to gain insight into the influence of these elements on the
epidemic dynamics. The baseline parameters are otherwise held constant, and we consider the
epidemic reproductive number R0 (Figure 4) and the epidemic attack ratio AR (Figure 5) as a
function of these two parameters. It is intuitive that a short pre-symptomatic infectious period
or an efficient removal of symptomatic children will depress the attack ratio, but it is surprising
that both variables must be within a small range to achieve this effect. For example, if the pre-
symptomatic infectious period is > 12 h, then the removal of symptomatic children must be >
80% per day to significantly reduce the attack ratio. If the removal of symptomatic children is <
50% per day, then only if the pre-symptomatic infectious period is < 6 h, will the attack ratio be
significantly reduced.

Figure 4: R0 as a function of the pre-symptomatic infectious period 0.0 < Ts − Ti < 1.0 days,
Ti = 0.75 days, 0.75 < Ts < 1.75 days, and the removal rate of symptomatic children 0.0% <
Rsym < 100%. The height of the red plane is at R0 threshold value 1.0. The green dot is the value
of R0 = 1.29 at the baseline parameter values (Ti = 0.75 days, Ts = 1.0 day, and Rsym = 70%
per day).

An illustration of how the simulations in Figure 5 can guide school closing policy is as follows:
if the disease carries significant morbidity and mortality, the decision to close schools is advisable
when the pairing {Ts−Ti, Rsym%} yields an attack ratio > 60%. In such case the attack ratio is not
significantly affected by the existing surveillance and removal policies of symptomatic children.
However, if the pairing yields an attack ratio < 30%, then surveillance and removal measures can
have substantial impact in reducing the attack ratios, and can be further enhanced. Other percent
values can be used by officials as acceptable (e.g. 10% rather than 30%) or unacceptable (e.g. 40%
rather than 60%) to predict the attack ratio based on the initialization and parameterization of the
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Figure 5: The attack ratio AR as a function of the pre-symptomatic infectious period and the
removal rate of symptomatic children as in Figure 4. The height of the green plane is 30% and
the red plane 60%. Attack ratios corresponding to pairings of the control variables above the red
plane are not effectively controlled by the removal rates of symptomatic children, whereas those
below the green plane are. Pairings between the two planes are marginal for school closings, but
enhanced surveillance and removal measures may reduce attack ratios to acceptable values. The
yellow dot is the value of the removal rate = 41% at the baseline parameter values.

model in a specific school context.

5. Discussion
School closings policy is a critical issue for epidemics such as the 2009 novel influenza A (H1N1)
epidemic. This outbreak has highly impacted younger age groups in Mexico, the US, and else-
where ([13],[36]), and has potential for even greater impact on youths in future waves ([10],[22]).
A key epidemiological factor for younger age cohorts is the importance of asymptomatic and pre-
symptomatic individuals, since these cases may evade parental and institutional identification and
isolation but still contribute significantly to transmission, and since surveillance and removal poli-
cies in schools are necessarily linked to manifestation of symptoms.

We provide a mathematical model that can guide public health and school officials in ascer-
taining when school closures are warranted, by quantifying the tension between asymptomatic
transmission and efficiency of surveillance methods. For school environments the model provides
a rationale for improved surveillance methods. For example, non-invasive temperature monitoring
with real-time thermal sensors, as in current use in some airports ([41]), offers a potential advance
for improved surveillance and rapid isolation of infected students. Another important advance for
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surveillance methods is to implement antibody-based testing, to see who is immune and no longer
susceptible ([35]). In the long term, the benefits of implementing such new surveillance technolo-
gies in schools should be evaluated. Near term, informed decisions for school closings will become
increasingly important, if the recent spring A (H1N1) epidemic in North America and elsewhere
in the world is merely a herald wave for a fall-winter wave of the new HI1N1 variant, which may
occur with greater virulence, as has been widely anticipated ([8],[20]).

Our modeling approach is based on a model that tracks infected individuals through their dis-
ease course with a continuum variable corresponding to age of infection. Age of infection models
were introduced by Kermack and McKendrick ([25]) in 1927 and have been used extensively to
model epidemics (a review is given by Brauer ([3]). Our age of infection model focuses on fea-
tures important to school closings, namely the age of infection tracked symptomatic and infectious
phases of infectives and the efficiency of surveillance and isolation controls. These features are
readily recognizable to public health officials and relevant to their recommendations. Our model
quantifies the relationships of these features and predicts the consequences of control measures.
In Fraser et al. [12], epidemic outbreak control interventions were studied in linear models based
on time since infection, with emphasis on the overlap of the pre-symptomatic and infectious peri-
ods. The basic model in [12] can be recast as a well-posed age of infection model similar to ours,
but without incorporation of the susceptible population and without any removal of the infected
population.

We argue that a useful indicator derived from an epidemic model of school closings is not
only the epidemic reproduction number R0 (which is defined abstractly as the average number
of secondary infections per infected individual over an infection lifetime in a given susceptible
population context), but also the epidemic attack ratio (or attack rate) AR, which is the fraction
or percentage of the susceptible population ultimately infected. In our model AR depends on the
initial value of the infected population, whereas R0 does not. The initialization of the infected
population of the epidemic is critical for determination of its long-term behavior. In Figure 6 we
illustrate the dependence of AR on the initial infected population in our model, which illustrates
that the size of the initial infected population strongly influences the ultimate attack ratio. In addi-
tion, school re-opening policies can be evaluated by a re-set of the initial conditions, which again
underscores their importance in modeling approaches. Our model provides a means to identify
AR based on parameterizations that are recognizable to public health officials, namely, the length,
severity, and overlap of the symptomatic and infectious periods (see the Appendix). Beyond R0

and AR, our modeling approach quantifies through simulations the full course of an epidemic in a
way also recognizable to public health officials, namely the consequences of policies that identify
and isolate infected children from the school.

Our modeling methodology is deterministic, with a small number of parameters, and can be
completely analyzed for parameter sensitivity and parameter dependent outcomes. We provide on-
line open access to our simulations codes, which can be readily adapted to specific school settings,
at

http://www.med.nyu.edu/medicine/labs/blaserlab/h1n1-math-model.html

Our model is further applicable to other epidemic-at-risk populations, including those at large
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Figure 6: The dependence of the attack ratio AR on the initial value through the formula (6.11)
while ARi is given by formula (6.10) (see the Appendix). The distributed parameters β(a) and
µ(a) are at baseline values and the initial condition i(a, 0) = i0(a) is varied to give ARi via
formula (6.11). We vary i0(a) from 0 to 250 for the first two days and 0 otherwise. With value
150 we have ARi approximately 0.2, which gives an attack ratio 0.62. The initial level of the
infected population strongly influences the attack ratio, especially at lower levels corresponding to
outbreak. School re-opening policies can be guided by re-setting the initialization to a new level
after intervals of school closure.

workplaces, military installations, event (large crowd) gatherings, mass transit sites, and other
settings suitable for social distancing policies.
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6. Appendix
The compartments of the model are given in Figure 1. The model equations are

d

dt
S(t) = −

(∫ Ti+Fi

Ti

β(a)i(a, t)da

)
S(t), t ≥ 0 (6.1)
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∂

∂t
i(a, t) +

∂

∂a
i(a, t) = −µ(a)i(a, t), t ≥ 0, 0 ≤ a ≤ Ti + Fi (6.2)

i(0, t) =

(∫ Ti+Fi

Ti

β(a)i(a, t)da

)
S(t), t ≥ 0 (6.3)

d

dt
R(t) = i(Ti + Fi, t) +

∫ Ti+Fi

Ti

µ(a)i(a, t)da, t ≥ 0 (6.4)

S(0) = S0, i(a, 0) = i0(a), a ≥ 0, R(0) = 0 (6.5)

where t is time, a is age of infection, S(t) is the number of susceptibles at time t, i(a, t) is the den-
sity of infectives of infection age a at time t, and R(t) is the number of removed infectives at time
t. The initial conditions are specified in (6.5). The baseline parameters β(a), µ(a), Ti, Fi, Ts, Rsym

are given in Table 1. The period of pre-symptomatic infectiousness is Ts − Ti . At time t, the total
numbers of exposed (latent) infectives E(t), infectious infectives I(t), pre-symptomatic infectives
PS(t), symptomatic infectives SI(t), and pre-symptomatic infectious infectives PSI(t) are

E(t) =

∫ Ti

0

i(a, t)da, I(t) =

∫ Ti+Fi

Ti

i(a, t)da, PS(t) =

∫ Ts

0

i(a, t)da,

SI(t) =

∫ Ti+Fi

Ts

i(a, t)da, PSI(t) =

∫ Ts

Ti

i(a, t)da.

It can be verified directly that the following formula for i(a, t) gives a generalized solution of (6.2)
in terms of i(0, t):

i(a, t) =

{
i(0, t− a)e−

R a
0 µ(b)db, a < t,

i0(a− t)e−
R a

a−t µ(b)db, a ≥ t.
(6.6)

Further, from (6.1) and (6.3)

i(0, t) = − d

dt
S(t) =

( ∫ Ti+Fi

Ti

β(a)i(a, t)da

)
e−

R t
0

R Ti+Fi
Ti

β(a)i(a,s)dadsS0. (6.7)

The proof of the following theorem uses the method of steps to obtain a unique solution to (6.6)
and (6.7). The proof of the existence of the solution and its asymptotic behavior is similar to the
proof given in ([46]).

Theorem 1. Let Ti, Fi > 0, β, µ ∈ L∞+ (0, Ti + Fi), S0 > 0, and i0 ∈ L1
+(0, Ti + Fi). There

exists a unique solution to (6.6) and (6.7). If µ(a) ≥ µ̄ for some µ̄ > 0, a ∈ [0, Ti + Fi], then
limt→∞ S(t) = S∞ > 0, limt→∞ R(t) = 0, and limt→∞ I(t) = 0.
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The formula for the epidemic reproduction number is

R0 = S(0)

∫ Ti+Fi

Ti

β(a)e−
R a

o µ(b)dbda. (6.8)

The formula for the cumulative number of cases C(t) at time t is
∫ t

0
i(0, t)dt, the fraction of the

initial susceptible population that has been infected by time t is
∫ t

0
i(0, t)dt/S(0), and the epidemic

attack ratio for the entire course of the epidemic is AR =
∫∞
0

i(0, t)dt/S(0). The total cumulative
number of cases during the course of the epidemic is

∫ ∞

0

i(0, t)dt =

(
1− Exp

[
−

∫ ∞

0

∫ Ti+Fi

Ti

β(a)i(a, t)da dt

])
S(0)

=

(
1− Exp[−

∫ Ti+Fi

Ti

β(a)

{ ∫ a

0

i(a− t, 0)e−
R a

a−t µ(b)dbdt

+

∫ ∞

a

i(0, t− a)e−
R a
0 µ(b)dbdt

}
da

)
S(0)

=

(
1 − Exp

[
− ARi −R0 AR

])
S(0), (6.9)

where ARi is obtained from the infective initial data by the formula

ARi =

∫ Ti+Fi

Ti

β(a)

∫ a

0

i(â, 0)e−
R a

â µ(b)dbdâ da. (6.10)

Thus, from (6.8),(6.9), and (6.10), AR satisfies uniquely the equation

AR = 1 − e− (ARi +R0 AR). (6.11)
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