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Abstract 

Background: The unpredictable nature of the potentially devastating impact of 2009 

pH1N1 influenza pandemic highlights the need for pandemic preparedness planning, 

where modeling studies could be most useful for simulations of possible future scenarios. 

Methods: A compartmental model with pre-symptomatic and asymptomatic influenza 

infections is proposed which incorporates age groups as well as intervention measures 

such as age-specific vaccination, in order to study spread of influenza in a community. 

Results: We derive the basic reproduction number and other effective reproduction 

numbers under various intervention measures. For illustration, we make use of the 

Pneumonia and Influenza (P&I) mortality data and vaccination data of the very young 

(age 0-2) and the very old (age >64) during 2004-2005 Taiwan winter influenza season to 

fit our model and to compute the relevant reproduction numbers. The reproduction 

number for this winter flu season is estimated to be slightly above one (~1.0001).   

Conclusions: Comparatively large errors in fitting the P&I mortality data of the elderly 

(>64) were observed shortly after winter school closings in January, which may indicate 

the impact of younger, more active age groups transmitting influenza to other age groups 

outside of the school settings; in particular, to the elderly in the households. 

Pre-symptomatic infections seemed to have little effect on the model fit, while 

asymptomatic infection by asymptomatic infectives has a more pronounced impact on the 

model fit for the elderly mortality, perhaps indicating a larger role in disease transmission 

by asymptomatic infection. Simulations indicate that the impact of vaccination on the 

disease incidence might not be fully revealed in the change (or the lack thereof) in the 

effective reproduction number with interventions, but could still be substantial. The 

estimated per contact transmission probability for susceptible elderly is significantly 

higher than that of any other age group, perhaps highlighting the vulnerability of the 

elderly due to close contacts with their caretakers from other age groups. The relative 
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impact of targeting the very young and the very old for vaccination was weakened by 

their relative inactivity, thus giving evidence of the lack of impact of vaccinating these 

two groups on the overall transmissibility of the disease in the community. This further 

underscores the need for morbidity-based strategy to prevent elderly mortality. 
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Background 

In the spring of 2009, the novel H1N1 influenza virus first emerged in Mexico and later 

spread widely throughout the world within just a few months. The World Health 

Organization (WHO) announced on June 11 the start of 2009 influenza pandemic [1], and 

further issued an advisory on August 28 for countries in the northern hemisphere to 

prepare for a second wave of pandemic spread in the coming fall/winter [2]. As of 

November 8, more than 206 countries and overseas territories or communities worldwide 

have reported laboratory confirmed cases of the pandemic pH1N1 virus, including over 

6250 deaths [3].  

To lessen the severity of this pandemic, developing an effective flu vaccine and a 

global vaccination strategy is considered to be among the most important medical 

interventions [4]. However, to have the greatest impact, pandemic vaccines need to be 

available quickly and in large quantities, and to be delivered to the population optimally. 

Moreover, vaccines against a novel pandemic strain might take up to six months to 

manufacture and deliver, even in developed countries [5]. Given the potential threat of 

drug-resistance resulting from widespread use of antiviral treatment against pandemic flu, 

vaccine appears to be our primary weapon to prevent and to mitigate a pandemic. 

However, in addition to the need to consider the logistics of implementing large-scale 

vaccination, distinctly different age-specific mortalities had also been observed during 

some past flu pandemics (e.g., in 1918 [6]), which require different priorities when 

large-scale vaccination is to be implemented.  

Moreover, vaccine for influenza is known to have different efficacy (i.e., reduction 

in the number of infectives) and effectiveness (i.e., reduction in symptomatic case 

number) for different age groups, see e.g., [7-9]. Setting priority for vaccination by 

targeting age groups most vulnerable (the elderly, infants, etc.) to prevent mortalities is 

commonly employed in most countries. However, when vaccinating those at greatest risk 
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of mortality becomes impractical (if, e.g., medical care is relatively inaccessible) or 

inefficient (if, e.g., immune response is deficient), targeting those most likely to expose 

them to infection might be more preferable [10]. In this way, the very young and the old 

might be better protected by vaccinating those who are most likely to be in contact with 

them (thereby reducing their risk of exposure), rather than by being vaccinated. 

Comparison of influenza mortality among elderly Japanese during time periods when 

schoolchildren were and were not vaccinated suggests that the infected children pose a 

risk to others [11], including the elderly. Moreover, several past US experiences (as 

summarized in [12]) also are consistent with this conclusion. Nonetheless, influenza 

policymakers have typically advocated protecting those individuals of ages 6-24 months 

and >65 years directly.  

Bansal et al. [13] recently carried out a comparative analysis of two classes of 

suggested vaccination strategies, namely, the mortality-based strategies that target the 

high-risk populations and the morbidity-based strategies that target the high-prevalence 

populations, by applying the methods of contact network epidemiology to a model of 

disease transmission in a large urban population. Using a range of mortality rates reported 

previously for past influenza epidemics and pandemics, they concluded that the optimal 

strategy depends critically on the viral transmission level (or reproduction number) of the 

virus. That is, the morbidity-based strategies outperform the mortality-based strategies for 

moderately transmissible strains, while the reverse is true for highly transmissible strains. 

However, they also cautioned that when information pertaining to viral transmission rate 

of a particular disease and the frequency of new introductions into the community prior to 

an outbreak is unreliable or not available, a mortality-based vaccination priority is 

recommended. This further demonstrates the importance of targeting and, moreover, the 

uncertainty surrounding this issue. 

To further the uncertainties regarding influenza pandemic preparedness planning, it 
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is widely believed that asymptomatic cases (i.e., individuals who had been infected but 

showed little or no symptoms) and asymptomatic infection of influenza (i.e., infection 

caused by an asymptomatic case) do indeed occur regularly (e.g., [14-17]).  

Model with only asymptomatic infections, by either asymptomatic or subclinical 

infectives, during their infectivity period had been recently studied in [14]. In this current 

study, we will consider a traditional compartmental model which incorporates both 

pre-symptomatic and asymptomatic infections, in order to explore the role which they 

could play in the overall spread of disease, if any. Moreover, the age-group structure of 

the model, by dividing the population into seven groups of the very young, preschool 

children, younger and older schoolchildren, young adults, adults, and the elderly, allows 

us to study targeted public health policies (e.g., immunization) aimed at different age 

groups. Our model also allows for inclusion of immunity and other age-dependent 

intervention measures such as quarantine and voluntary home withdrawal (see e.g., 

[15-16]). A full model will be proposed to take into account of the above-mentioned 

factors that may be important in determining the best vaccine strategy.  

Methods  

Model Formulation 

Our model is an age-dependent compartmental model. The model flowchart is given in 

Fig. 1, where the subscript i denotes the i
th

 age group. The model variables are described 

as follows, with the time unit t in days: 

( )iS t : number of susceptible individuals of the ith age group at time t; 

( )iV t : number of vaccinated individuals of the ith age group at time t; 

( )iE t : number of exposed (infected) individuals of the ith age group at time t; 

( )V

iE t : number of exposed (infected) vaccinated individuals of the ith age group at time 
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t; 

( )iQ t : number of quarantined infected individuals of the ith age group at time t; 

( )iI t : number of infective individuals of the ith age group at time t; 

( )V

iI t : number of vaccinated infective individuals of the ith age group at time t; 

( )iA t : number of asymptomatic (subclinical) infective individuals of the ith age group at 

time t; 

( )iH t : number of hospitalized (treated) individuals of the ith age group at time t; 

( )iZ t : number of recovered and immune individuals of the ith age group at time t; 

( )iD t : cumulative number of influenza deaths of the ith age group at time t; 

cij: contact rate of an individual of ith group with an individual of jth group; 

ij
β : per contact transmission probability of a susceptible individual of ith group by an 

infective of jth group. 

πi : age-specific vaccine efficacy for age group i. 

( ) and ( )V

i i
t tλ λ : disease incidence rates for the susceptible and vaccinated individuals of 

age group i. See [Additional file 1] for detailed formulae. 

The rest of the model parameters are listed in Tables 1-2, with the age-specific 

parameters given in Table 2. The detailed description of the model is given in [Additional 

file 1]. Our main model assumptions are as follows: 

(1) Exposed individuals are infective during the incubation period. It is commonly 

known (e.g., [18]) that the pre-symptomatic (exposed) individuals cannot transmit the 

disease in the noninfectious latent period, during which the viral titres gradually increase 

to detectable and transmissible levels when they became infective for only a short period 

(0.25 days in [19]) before the onset of symptoms. To avoid adding an extra compartment 
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to account for the (short) period of infectivity after the end of the latent period and before 

the end of incubation period (see e.g., [20]), we assume that the individuals are infective 

during the incubation period with the infectivity averaged out over the whole incubation 

period. This simplification is reasonable since the incubation period for influenza is 

typically very short, e.g., 1.48 days in [21]. 

(2) Influenza vaccine is efficacious in preventing influenza infection and effective against 

influenza-like illness, albeit at different levels of efficacy and effectiveness for different 

age groups [8-9]. Moreover, the vaccinated individuals are less infectious, once they 

become infected, when compared to those who had not been vaccinated. 

(3) The quarantined individuals will be hospitalized directly following the onset of 

symptoms (see [22-23] for modeling of quarantine for 2003 SARS outbreak). 

(4) A fraction of the infectives has no symptoms or only subclinical symptoms, and is 

classified as asymptomatic infectives with reduced infectivity [14]. 

(5) A hospitalized person is removed from isolation either by death or discharged due to 

recovery from illness. 

(6) Homogeneous mixing within subpopulations is assumed. 

(7) Negligible births and deaths (excluding disease deaths) during the course of the 

disease outbreak are assumed. 

Reproduction Numbers  

The basic reproduction number R0, the average number of infections by an infective in an 

immunologically naive population (see, e.g., Diekmann et al. [24] or van den Driessche 

and Watmough [25]), is an important epidemiological quantity which gives indication to 

the potential severity of an epidemic. More precisely, the epidemic cannot be eradicated 

without interventions if R0 exceeds unity. Denoting 0 (0)
i i

S S= , we have 
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The two blue arrows denotes within-group infections ( 11R  and 22R ) and the black 

arrows denote inter-group infection cycle ( 12 21R R ). The term 11 22R R  subtracted in (3) 

accounts for the redundancy that resulted when adding 11R  and 22R . Similar results for 

the basic reproduction number of a multi-group model were also obtained in [26-27]. 

Moreover, we have the following effective reproduction numbers due to 

interventions: 
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(ii) The effective reproduction number with vaccination only over a time period of 

immunization [0, T], RV, is: 
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(iii) The effective reproduction number with interventions including vaccination RVE over 

the time period [0, T], is 
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Detailed derivations of the reproduction numbers are also given in [Additional file 

1]. Model fit using 2005-2006 Taiwan winter seasonal influenza data and age-specific 

vaccination data as it was implemented during that flu season, as well as simulation 

studies of hypothetical scenarios, will be carried out. 

Simulations with Taiwan Seasonal Influenza 

With the issue of morbidity-based vs. mortality-based vaccine strategy for pandemic 

influenza still open to debate, the Taiwan Centers for Disease Control (TCDC) launched a 

new program of free flu vaccination for 1st and 2nd grades elementary school students 

(age 6-7) prior to the 2007-2008 winter flu season which was expanded further to include 

grades 1-4 in the fall of 2008. The aim of this vaccine program is hopefully to lower the 

seasonal influenza incidence across all age groups of the population. In anticipation of 

future investigation on public health impact of this program, we carry out model 

simulations by dividing the Taiwan population into 7 age groups (see Table 2), and by 

making use of the weekly Taiwan influenza vaccination data for young children of age 2 

or less (age group 1, with free flu vaccination since 2004) and the elderly of 65 or older 

(age group 7, with free flu vaccination since 2001) during the 2004-2005 winter flu 

season. The average vaccine coverages of age groups 1 and 7 during the 2004-2005 

winter season in Taiwan are 63.4% and 58.2%, respectively.  

There were no other nonpharmaceutical intervention measures during this winter 

flu season. That is, all parameters pertaining to quarantine and home withdrawal in the 

model are set to be 0 in Table 1.  Moreover, for the sake of simplicity, we assume no 

noticeable level of migration and no waning of immunity during the flu season. The rest 

of the parameter values used are given in Tables 1-2. We also assume a conservative 20% 

pre-epidemic immunity in our simulation based on a recent sero-epidemiological survey 
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conducted during 2005-2006 winter flu season in Taiwan [28]. 

For the contact rates between different age groups, we make use of the age-specific 

contact matrix obtained by Wallinga et al. [29] for Utrecht, the Netherlands, 1986. We 

adjust for the discrepancy in the population age distributions of Taiwan in 2005 and the 

Netherlands in 1986, by considering the ratios of demographic age structures of 

Netherlands in 1987 (Appendix Table 1 in [29]) and of Taiwan in 2005 [Additional file 1: 

Table A1]. The resulting contact matrix, of the average daily number of contacts for each 

individual in a certain age group with individuals in another age group, is given in 

[Additional file 1: Table A2].  

Fitting with Seasonal Influenza Data 

The age-dependent hospitalization rates and per contact transmission probability in the 

last four rows (in bold) in Table 2 were obtained by least-squared curve-fitting with the 

2004-2005 Taiwan winter P&I (Pneumonia and Influenza) mortality data from October 9, 

2004 to March 5, 2005 for age groups 6 (age 22-64) and 7 (>64) using MATLAB 

software. 7 1( ) and ( )v vτ τ  are piecewise linear (by week) approximations of the 

respective weekly vaccination data for elderly (>64) and young children in Taiwan during 

this time period. To simply our data fitting, we first fitted the data by assuming the per 

contact transmission probability of the infectees in i
th

 group are averaged, i.e., 
ij iβ β≡  

(see next to the last row in bold in Table 2). 

Results 

The result of data fit is given in Fig. 3. The reason for using only groups 6 and 7 for data 

fit is that the P&I mortality data during that winter season consists mostly of older people. 

More precisely, 5038 (88.5%) of the 5694 individuals who died of P&I are of age 65 or 

older (age group 7), 607 (10.7%) are between age 22-64 (age group 6), followed by 17 

between age 0-2 (age group 1) and 14 between age 15-21 (age group 5). Each of other 
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age groups has only a handful of cases. Therefore, to avoid large errors due to fitting data 

with small data size, we only use the data from the two largest groups for our model fit.  

We also fitted the data by assuming the per contact transmission probability of the 

infectors in i
th

 group are averaged, i.e., 
ij jβ β≡  (see the last row in bold in Table 2 and 

Fig. 4). We will compare these results to ascertain the difference in age groups on per 

contact transmission probabilities to and from particular age groups. To give more insight 

to the data used and the goodness of fit, we also provide the daily observed and 

predicated mortality corresponding to the case ij jβ β≡  in [Additional file 1: Figs. 

S1-S2].  

Discussion and Conclusion 

Age-specific Transmission 

By fitting only the hospitalization rates and the per contact transmission probabilities to 

the 2004-2005 Taiwan winter season P&I mortality for age groups 6 (age 22-64) and 7 

(>64), we are able to obtain satisfactory model fit (see Fig. 3), although we note that 

fitting P&I deaths might conceivably lead to an overestimate of hospitalizations rates. 

However, simulation studies showed that the model fit is less sensitive to the 

hospitalization rates than to the transmission probabilities, and intuitively, most sensitive 

to changes in these rates for the elderly group.  

It is interesting to note that comparatively significant errors in both theoretical 

curves occur in late January roughly after day 110. We note that day 105 was January 22, 

2005, when all schools in Taiwan closed for the winter vacation which lasted until after 

the traditional lunar New Year holiday, in mid-February of that year. The school closure, 

and subsequent shutdown of all non-essential venues during the week-long New Year 

holiday, surely had a significant impact on the contact rates which was not reflected in 

our constant contact matrix that implicitly assumes that inter-age group contact patterns 
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remain the same during the whole season. More precisely, the P&I deaths for the elderly 

exhibits a slight increase for about 3 weeks after the closing of schools (shortly after the 

New Year) when compared to the model predicted values, while the P&I deaths for the 

adults of age 22-64 dropped substantially below the theoretical curve. These results 

indicate that the school closure and the subsequent New Year holiday led to more 

frequent contacts by the elderly in the households with family members who spent more 

time at home during the holidays At the same time, there were less contacts for the adults 

at the workplace (especially for those working in the educational facilities who had 

longer holidays) during this time period. Since most individuals in the elder group (and 

the very young) are not directly affected by the school closings and the holidays, one may 

speculate that the difference in the actual mortality and the theoretical mortality of the 

elderly, as averaged over the whole time period, is due at least in parts to the impact of 

interaction between the elderly and younger children with the school-age children and 

adults, when the activity levels (in terms of frequency as well as whom to make contact 

with) of the latter groups were significantly changed by the holidays.  

Furthermore, the elderly had a higher per contact transmission probability (Table 

2) but lower contact frequency [Additional file 1: Table A2]. This study showed that, with 

the combination of these two factors, morbidity-based vaccination strategy still could be 

effective for the prevention of elderly mortality. Although a recent study to quantify the 

effect of school closures during the 2008 winter influenza season in Hong Kong did not 

find the school closures as having a substantial effect on the community transmission 

[30], our results indicate the need for further studies on this topic. We also note that, 

normally, one would like to use averaged excess winter season P&I mortality data over 

other seasons for the data fitting of seasonal influenza. However, Taiwan often 

experiences summer influenza epidemics which would offset any attempt to obtain a 

reasonable “excess” P&I mortality for the winter season. 
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The Reproduction Number 

Using Equations (2-3) we obtain R0=1.0001, just above unity. However, we note that it is 

more appropriately the reproduction number R of the winter flu epidemic, given the 

effect of pre-epidemic immunity that must exist. Chowell et al. [31] used several weekly 

seasonal flu mortality data, derived from P&I excess deaths and influenza-specific deaths 

from US, France, and Australia during 1972-1997 (1972-2002 for US), to estimate the 

(mean) reproduction number Rp over 3 decades of seasonal flu. They found that the mean 

of Rp to be around 1.3, with year-to-year variability of 0.9-2.1. Our estimate is lower, but 

within their range.  

Vaccination 

It is also interesting to note that for our set of parameter values used in Figs. 4-5, the 

effective reproduction number with vaccine only (see Equations 5-6) has almost the same 

value as R0, to the fourth decimal digit. One explanation for this apparent lack of impact 

of vaccination during the 2004-2005 flu season, as indicated by the value of RV, is that 

the vaccination data we used is only for groups 1 (age 0-2) and 7 (age >64). In the 

formula for RV, or more precisely for 0V

ijR  in Equation (7), cij
2
 is the daily contact 

frequency between groups i and j. The contact frequencies of groups 1 and 7 [Additional 

file 1: Table A2] are substantially smaller than the contact frequencies of the other groups, 

with the exception of within-group contacts and contact between groups 1 and 2 (age 3-5) 

in daycare facilities. Therefore, the relative impact of targeting these two groups for 

vaccination was weakened by their relative inactivity, thus giving further evidence of the 

lack of impact of vaccinating the very young and the very old on the overall 

transmissibility of the disease in the community. However, simulation with the same 

parameter values as in Fig. 3 except assuming no vaccination in the young children and 

elderly age groups, i.e., ( ) ( )1 7 0t tυ υ= = , and everything else the same produces Fig. 5, 
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where the result indicates that the impact of no vaccination (red curves) would still be 

significant, resulting in nearly 4-fold increase in mortality of elderly and 2-fold increase 

in mortality of adults. Therefore, the impact of vaccination on the disease incidence 

sometimes might not be fully revealed in the change (or the lack thereof) in the effective 

reproduction number with intervention but could still be substantial, since it is a simple 

mathematical property that distinctly different (next generation) matrices may have 

similar eigenvalues.  

Furthermore, in our simulations we had assumed vaccine efficacy (proportion of 

infection prevented) of 40% for elderly and 70% for young children, to be in line with 

current literature [8-9]. However, efficacy depends very much on matching of the 

circulating strains with vaccine strains each year, where mismatch often causes low 

efficacy and might have affected our resulting data fit. We also assumed vaccine 

effectiveness (proportion of reduction in symptomatic cases) to be 60% for elderly and 

40% for young children (also see [8-9]). 

The per contact transmission probability for the susceptible elderly (>64) infectees 

(see next to the last row in Table 2) is estimated to be 0.155, more than three-fold of any 

other age group (with the young children of 0-2 being the next highest), which may be 

due to the common need for very close contact while the elderly (or younger children of  

age <3) are being cared for, typically by individuals from adults of ages 22-64 in age 

group 6, even though the frequency of contact might be less than that of with other age 

groups. This further highlights the high vulnerability of the elderly (or the younger 

children) to exposure from other age groups, and demonstrates the need for 

morbidity-based strategy to prevent the elderly (or younger children) influenza mortality. 

On the other hand, the estimated per contact transmission probabilities for the younger 

(<3) and the elderly (>64) infectors are also both higher than those of the other groups 

(see the last row in Table 2), but not significantly so except when compared with those 
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between ages 8-14. The higher transmission probabilities of young children and elderly 

infectives could reflect, again, the fact that contacts with these individuals are usually of a 

more intimate nature, although these probabilities are not as drastically different as their 

vulnerability to be infected. The less likelihood of schoolchildren of 8-14 to infect others 

might also be attributable to signs of their less intimate contacts with others as they grow 

into adolescence.  

To further explore this situation, we note that from Equation (6), the partial 

derivatives of v

ijR  with respect to 
i i

ν π  are: 

0( )[1 2(1 ) ] ( 1)  if  ,
( )

v

ij v

ii ii i i ii

i i

R
R R R i jκ ν π κ

ν π

∂
= − − − + − =

∂
 

0( )[1 (1 ) ]  if  .
( )

v

ij v

ij ij j j

i i

R
R R i jκ ν π

ν π

∂
= − − − ≠

∂
 

We know 0v

ii ii
R R≤  from Equations (2) and (7). We also know that  [0,1] κ ∈  and 

[0,1],
i i

ν π ∈  for all i. Subsequently, 
( )

v

ij

i i

R

ν π

∂

∂
 is a nonincreasing function of 

i i
ν π  for all 

i, j. However, since ( )
1

1 det 1
n V

V
R R

+
= − + , where ( )V V

ij
R R=  is the matrix with V

ijR   

its ijth element, the effective reproduction number with vaccination only, RV, does not 

necessarily decrease as the effective vaccination rate 
i i

ν π  increases. In other words, 

vaccination is not always beneficial in reducing incidence and the design of an effective 

vaccination program in multi-group model is highly nontrivial, unlike in simple epidemic 

models where there is a simple formula for the critical vaccination coverage level 

necessary for eradication (pc) [20]. In fact, it has been shown mathematically by Hadeler 

and Castillo-Chavez [32], using a model with a core group, that partially effective 

vaccination program may actually increase the total number of cases. Explicit 

quantification of an optimal vaccination policy ([33]) in a multi-group population 
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scenario remains to be a challenge for mathematical modelers and is beyond the scope of 

this work. Moreover, the model fit was carried out with vaccination (of the elderly and 

small children of age 2 or less) as the only intervention since vaccination was the only 

intervention that was implemented during the flu seasonal for which the fitted P&I data 

was collected. Further simulations with quarantine and home withdrawal also can be 

easily carried out. 

Pre-epidemic Immunity 

A related issue is that of pre-epidemic immunity. Further sensitivity analysis using 

pre-immunity in the range of 10%-30% has shown that the results of curve-fittings are 

not sensitive to small changes in the pre-epidemic immunity. One would expect that 

pre-epidemic immunity does impact the outbreak, but nonetheless it is not reflected, at 

least not in the reproduction numbers.  

Pre-symptomatic infection and asymptomatic infection by asymptomatic infectives 

were incorporated into the proposed model. To gauge the roles these two features of 

influenza might play in a seasonal influenza epidemic, we performed the following 

simulations. Again using Fig. 3 as a benchmark, we first assume no pre-symptomatic 

infection (τ=0) with all other parameter values unchanged (Fig. 6). Next we assume no 

asymptomatic infection by asymptomatic infectives (αi=αi
V
=0) (Fig. 7). The results 

indicate that pre-symptomatic infection seemed to have little effect on the model fits and 

the fitted parameters; while asymptomatic infection by asymptomatic infectives has a 

more pronounced impact on the model fit for the elderly, perhaps indicating the 

comparatively larger role asymptomatic infection plays in disease transmission. 

Finally, as the WHO Strategic Advisory Group of Experts (SAGE) recently made 

its recommendations for priorities in vaccination for the H1N1 pandemic in terms of the 

social groups (e.g., healthcare workers those with chronic medical conditions), health 

groups (pregnant women), and age groups [34], the model also can be used to divide 
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population into social/health groups. For example, to study vaccine policy for the elderly, 

we could divide the elderly into those living in households and those living in old age 

homes, since they mix differently in these two distinct settings. The model is also useful 

for simulations of the cost-effectiveness of vaccine and other intervention measures, such 

as prophylaxis treatment, perhaps in future work. 
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Tables 

Table 1. Model parameters with parameter values taken from published literature [15, 19, 21]. 

The parameter values without a source (mostly 0) are assumed values. 

Parameter Description Baseline value Source 

σ mean vaccine waning rate 0  

1/γ mean incubation period of exposed individuals 1.48 [21] 

1/γ1 mean time to onset of those who had been quarantined NA  

ρ mean recovery rate of untreated infectives 1/2.85 [19] 

ρ
V 

mean recovery rate of vaccinated infectives with 

Vρ ρ≥  
1/2.85 [19] 

ρ2 mean recovery rate of asymptomatic infectives 1/2.85 [19] 

ω mean immune waning rate 0  

ε migration rate of the population 0  

ε1 migration rate of symptomatic infectives 0  

θ immigration rate of the population 0  

θ1 immigration rate of symptomatic infectives 0  

q quarantine rate of unvaccinated exposed individuals 0  

q
V 

quarantine rate of vaccinated exposed individuals 0  

1-φ 
home withdrawal rate of untreated symptomatic 

infectives 
0  

1-φ1 home withdrawal rate of all “well” individuals  0  

τ 
reduction in infectivity of unvaccinated pre-symptomatic 

infectives 
0.4  

τ1 reduction in infectivity of asymptomatic infectives 0.5 [15] 

τ2 reduction factor in contact due to hospital isolation 0  

κ reduction in infectivity of vaccinated infectives 0.5 [15] 
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Table 2. Age-specific model parameters with the following sources: the age-specific values of 

vaccine efficacy and effectiveness [8-9], fraction of the symptomatic infectives [15] and [28], and 

all other values from 2003-2006 Taiwan flu monitor surveillance data.  

  age group 

parameter 
0-2 3-5 6-7 8-14 15-21 22-64 ≥ 65 

time-dependent vaccination rate νi(t)  ( )1 tυ  0 0 0 0 0 ( )7 tυ  

vaccine efficacy πi [8-9] 0.7 0.7 0.7 0.7 0.5 0.5 0.4 

fraction of asymptomatic infectives αi [15, 

28] 
0.5 0.5 0.5 0.5 0.5 0.5 0.7 

reduced fraction of asymptomatic 

infectives due to vaccination V

iα  [8-9] 
0.4 0.4 0.4 0.4 0.4 0.4 0.6 

mortality rate of untreated infectives δi 6 ×10
-4

 5 ×10
-4

 5 ×10
-5

 5×10
-5

 5×10
-5

 1×10
-4 

0.002 

mortality rate of untreated vaccinated 

infectives V

iδ
*
  

6 ×10
-4

 5×10
-4

 5 ×10
-5

 5×10
-5

 5×10
-5

 1×10
-4 

0.002 

mortality rate of hospitalized infectives 

iδ  
0.006 0.005 5 ×10

-4
 5×10

-4
 5×10

-4
 0.001 0.02 

mean recovery rate of the hospitalized 

infectives ρ1 
1/4.85 1/4.72 1/4.45 1/4.56 1/5.55 1/9.16 

1/16.9

4 

hospitalization rate of unvaccinated 

symptomatic infectives hi 

0.007 0.007 0.007 0.007 0.007 0.007 0.09 

hospitalization rate of vaccinated 

symptomatic infectives V

ih
*
  

0.007 0.007 0.007 0.007 0.007 0.007 0.06 

per contact transmission probability of 

infectees in i
th

 group 
ij iβ β≡  

0.047 0.039 0.031 0.031 0.047 0.045 0.155 

per contact transmission probability of 

infectors in i
th

 group 
ij jβ β≡  

0.083 0.029 0.045 0.008 0.040 0.056 0.078 

*
Note that V

i ih h≥  and V

i iδ δ≤ . 

The last four rows (in bold) were obtained by least-squared curve-fitting with data using 

MATLAB software.
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 Figure legends 

Fig. 1. Model flow diagram. 

Fig. 2. Graphical illustration of the basic reproduction number for n=2. The two blue 

arrows denotes within-group infections ( 11R  and 22R ) and the black arrows denote 

the inter-group infection cycle ( 12 21R R ). The term 11 22R R  subtracted in (3) 

accounts the redundancy due to adding both 11R  and 22R . 

Fig. 3. Model fit for the 2004-2005 (10/9/04-3/5/05) winter cumulative P&I mortality 

data in Taiwan for age groups 6 (age 22-64) and 7 (>64), with ij iβ β= . The black 

dots are the real data; the solid curves are simulated 6 7( ) and ( )D t D t  from the 

model, where R
2
 are 0.97222 and 0.99123 for fitting 6 7( ) and ( )D t D t , respectively.  

Fig 4. Model fit for the 2004-2005 (10/9/04-3/5/05) winter cumulative P&I mortality data 

in Taiwan for age groups 6 (age 22-64) and 7 (>64), with ij jβ β= . The black dots 

are the real data; the red curves are simulated 
6 7( ) and ( )D t D t  from the model, 

where R
2
 are 0.99403 and 0.96763 for fitting 

6 7
( ) and ( )D t D t , respectively. 

Fig 5. Simulation with the same model parameters as in Fig. 3, except 

( ) ( )1 7 0t tυ υ= = . The black dots are real data, the red curves are model fits in 

Fig. 3, and the blue curves denote simulation without vaccination. 

Fig 6. Model fit with same model parameters as Fig. 3 except no asymptomatic infection 

by asymptomatic infectives (τ=0). The black dots are the real data; the red curves 

are the model fit, where R
2
 are 0.97346 and 0.99259, respectively. 

Fig 7. Model fit with same model parameters as Fig. 3 except no asymptomatic infection 

by asymptomatic infectives (αi=0). The black dots are the real data; the red curves 

are the model fit, where R
2
 are 0.99472 and 0.94446, respectively. 
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Title: Electronic Supplementary Material 

Description: SVEQIAHR Model Details and Supplementary Data. 
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