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a b s t r a c t

An SEIR model with varying population size and vaccination strategy is investigated. Three
threshold parameters R0; bR0;R0 and eR0 are obtained to govern the disease eradication,
which involve the total number of infectives and their proportion in the population. Param-
eter conditions on the uniform persistence, the global stability of the disease – ‘‘free” equi-
librium and the ‘‘endemic” equilibrium are derived. The global dynamics of model in
population size are studied. The correlations of the two systems in terms of disease erad-
ication, endemicity and disease explosion are summarized and compared. We conjecture
that substantially low product of vaccination rate and low vaccine efficacy may lead to
complicated dynamics for the system in question.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

Mathematical modeling for disease transmission in host population is of great practical value in predicting and control-
ling disease spread (West Nile virus in North America 1990s, Avian influenza worldwide 2000s, SARS in Asia 2003, etc.). The
battle between infectious diseases and humans was heavily lopsided for much of the history. Since the pioneering work of
Edward Jenner (a doctor, who worked in Gloucestershire, UK, noticed that individuals who had contracted cowpox rarely
caught smallpox) on smallpox [1], the process of protecting individuals from infection by vaccination has become routine,
with substantial historical success in reducing both morbidity and mortality (see [2,3] and references cited therein). In this
paper, we will incorporate a vaccination strategy for disease control into a single host population.

Typically, after the initial infection, the host remains in a latent stage for a period of time before becoming infectious. For
some diseases, the latent period is neither short nor negligible comparing with the infectious period (scarlet fever: 1–2 days
versus 14–21 days [4]; measles: 4–12 days versus 17–31 days [5]). Distinguished by the evolution history of disease, the
heterogeneous population is partitioned into four homogeneous classes: the susceptible S(t), the exposed (in the latent per-
iod) E(t), the infective I(t), and the recovered R(t). The total number of population N(t) is denoted by N(t) = S(t) + E(t) + I
(t) + R(t), where N(t) is assumed to vary with time since individuals enter and leave the population either through migration,
demographics or the disease-induced death, which imbalances the inflows and outflows of a given population. The disease
transmission flow is depicted in Fig. 1.

Here the disease is assumed to transmit horizontally, which can occur either by direct contact (licking, touching, biting),
or indirect contact (vectors or fomites) with no physical contact. All the offsprings at birth are assumed susceptible to the
disease (Cholera, Polio and Hepatitis A are of this case).
. All rights reserved.
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Fig. 1. A schematic representation of the flow of individuals between epidemiological class.
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Parameters b and d are the inflow rate (including birth and immigration) and outflow rate (including natural death and
emigration), respectively. And a is the constant rate of disease-related death. The proportionate mixing incidence rate is kIS/
N, i.e., standard incidence, where k is the effective per capita contact rate of infectious individuals, and I/N is the proportion of
contacts between susceptibles and infectives, that is, random mixing is assumed. We assume that susceptible individuals are
vaccinated at a constant per capita rate a(0 6 a < 1) (i.e., vaccine coverage rate). Due to the partial efficiency of the vaccine,
only r(0 6 r 6 1) fraction of the vaccinated susceptibles goes to the recovered class (i.e., r is the vaccine efficacy). The re-
mained 1 � r fraction of the vaccinated susceptibles has no immunity at all and goes to the exposed class after infected by
contact with the infectives. When r = 0, it means the vaccine has no effect at all, and when r = 1, the vaccine is perfectly
effective. The parameter e is the constant rate, at which the exposed individuals become infectious. and 1/e is then the mean
latent period. In the limit when e ?1, the latent period is negligible, and the SEIR model can reduce to an SIR model (see
[2,6,7]). Parameter b is the constant rate, at which the infectious individuals recover with acquire permanent immunity.
Hence, there is no transfer from class S. R back to class 1/b is the mean infectious period. When b = 0, the mean infectious
period goes to infinity, which implies that there is no recovery from the disease. The SEIR model then reduces to an SEI model
(for example, HIV [8,9]). All the parameters (except the non-negative a, r) here are assumed positive.

Using these definitions, assumptions and Fig. 1, we derive the following general SEIR model with vaccination and varying
population size in a homogeneously mixing population.
S0 ¼ bN � kð1� aÞIS=N � ð1� rÞakIS=N � ðraþ dÞS;
E0 ¼ kð1� aÞIS=N þ ð1� rÞakIS=N � ðdþ eÞE;
I0 ¼ eE� ðaþ bþ dÞI;
R0 ¼ raSþ bI � dR;

ð1Þ
where the derivative d/dt is denoted by 0.
Moreover, the differential equation of total population size N(t) takes the form:
N0 ¼ ðb� dÞN � aI; ð2Þ
which is derived by adding the four equations in (1).
The global stability of an SEIR model with nonlinear incidence rates is studied by Sun et al. [10]. Feng [11] give out the

final and peak epidemic sizes for SEIR models with quarantine and isolation. Li and Wang [12] systematically analyze the
global dynamics of the SEIR model with constant recruitment, and with disease vertical transmission and incorporating per-
fect vaccination strategy, respectively. Arino et al. [13] consider the vaccine efficacy and waning in an SIRS model and pres-
ent the occurrence of backward bifurcation leading to bi-stability. The latent time delay is incorporated into the SEIR model
by Yan and Liu [14]. All the models above are with constant population size. Busenberg–van den Driessche [15], and Li et al.
[16] investigate an SIRS model and an SEIR model with varying population size, respectively. As far as we know, this paper is
very novel in analyzing the SEIR model with varying population size and vaccination strategy. The paper is organized in the
following manner: We give some well-posed preliminary results and the stability properties of disease-‘‘free” equilibrium of
the model in Section 2. Section 3 devotes to the uniform persistence, the existence, local and global stability of the ‘‘endemic”
equilibrium for the reduced proportional system. In Section 4, we determine the dynamic behaviors of original population
model, and obtain the correlation between the original and the reduced models from the perspective of epidemiology. The
paper ends up with a discussion.

Remark 1. We have to point out here that there have two distinct concepts of disease eradication and persistence which
involve the total number of infectives and their proportion in the population. The quotation marks in disease-‘‘free” and
‘‘endemic” only refer to the latter, and however, it can not guarantee the same outcomes happening to the total number of
infectives.
2. Disease ‘‘eradication’’

2.1. Preliminary results

In the situation that the total population size N(t) is not constant, it is often necessary to consider the proportions of indi-
viduals in four epidemiological classes, namely,
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s ¼ S=N; e ¼ E=N; i ¼ I=N; r ¼ R=N:
It is easy to verify that s, e, i and r satisfy the following system of differential equations
s0 ¼ b� ðraþ bÞs� ð1� arÞkisþ ais;

e0 ¼ ð1� arÞkis� ðbþ eÞeþ aei;

i0 ¼ ee� ðaþ bþ bÞiþ ai2
;

r0 ¼ rasþ bi� br þ air

ð3Þ
with subject to the restriction s + e + i + r = 1. It notices that the variable r does not appear in the first three equations of (3).
We can first study the reduced system
s0 ¼ b� ðraþ bÞs� ð1� arÞkisþ ais;

e0 ¼ ð1� aaÞkis� ðbþ eÞeþ aei;

i0 ¼ ee� ðaþ bþ bÞiþ ai2
;

ð4Þ
and determine r from r = 1 � s � e � i or from r0 = as + b i � br + air.
The feasible region of (4) is
D :¼ fðs; e; iÞ 2 R3
þj0 6 sþ eþ i 6 1g; ð5Þ
which can be verified positively invariant (i.e., given non-negative initial values in D, all solutions to (4) have non-negative
components and stay in D for t P 0) and globally attracting in R3

þ with respect to (4). Therefore, we restrict our attention to
the dynamics of (4) in D. The boundary and the interior of D are denoted by @D and D�, respectively.

2.2. Disease-‘‘free” equilibrium (DFE)

There are two distinct ways of considering a disease as being eradicated in a population with varying size. The stricter
way requires that the total number of the infected E(t) + I(t) ? 0, while a weaker requirement is that the proportion sum
e(t) + i(t) ? 0 (see details in [17]). We are thus inspired to seek the conditions for the existence and stability of the dis-
ease-‘‘free” equilibrium (DFE) P0(s0,0,0) and the ‘‘endemic” proportion equilibrium P*(s*,e*, i*).

Clearly, P0(b/(ra + b),0,0) 2 D is the DFE of (4), which exists for all positive parameters. The Jacobian matrix of (4) at an
arbitrary point P(s,e, i) takes the form:
JðPÞ ¼
�ðraþ bÞ � ð1� arÞkiþ ai 0 �ð1� arÞksþ as

ð1� arÞki �ðbþ eÞ þ ai ð1� arÞksþ ae
0 e �ðaþ bþ bÞ þ 2ai

0B@
1CA: ð6Þ
To analyze the stability of DFE, we calculate the characteristic equation of J(P) at P = P0 as follows:
ð�kþ raþ bÞ �k2 þ ðaþ bþ eþ 2bÞ�kþ ðbþ eÞðaþ bþ bÞ � bekð1� arÞ
raþ b

� �
¼ 0: ð7Þ
The stability of P0 is equivalent to all eigenvalues of (7) being with negative real parts, which can be guaranteed by
R0 :¼ bekð1� arÞ
ðbþ eÞðraþ bÞðaþ bþ bÞ < 1: ð8Þ
Here R0 is the epidemiological threshold parameter. Consequently, the DFE is locally asymptotically stable if R0 < 1.

2.3. Global stability of the DFE

In this sub-section, we show that the parameter restrictions of local stability of the DFE guarantee its global stability. Here
we define another threshold parameter
bR0 ¼
�kð1� arÞ

ðeþ bÞðaþ bþ bÞ :
It notices that bR0 < 1 guarantees R0 < 1, but the vice versa is not true.

Theorem 2.1. The DFE P0(b/(ra + b),0,0) of (4) is globally asymptotically stable in D if bR0 6 1; it is unstable if R0 > 1. In the
latter case, the solutions of (4) starting sufficiently close to P0 in D move away from P0, except those starting on the invariant s-axis
which approach P0 along this axis.
Proof. We prove the global stability of P0 by constructing a suitable Lyapunov function L1 = ee + (e + b)i. Differentiating L1

along (4) obtains that
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L01jð4Þ ¼ e½ð1� arÞkis� ðeþ bÞeþ aei� þ ðeþ bÞ½ee� ðaþ bþ bÞiþ ai2�

¼ ekð1� arÞisþ eaei� ðeþ bÞðaþ bþ bÞiþ aðeþ bÞi2

¼ i½ekð1� arÞs� ðeþ bÞðaþ bþ bÞ þ eaeþ aðeþ bÞi� ð9Þ
The maximum value of (9) in D is achieved at the extremal points: A1(0,0,0), A2(1,0,0), A3(0,1,0) and A4(0,0,1). It is easy to
verify that at these four points, L01jð4Þ 6 0 when R0 6 1. (9) becomes an equality, i.e., L01jð4Þ ¼ 0 if i = 0 or bR0 ¼ 1. The maximum
invariant set in fðs; e; iÞ 2 DjL01jð4Þ ¼ 0g is the singleton {P0}. By LaSalle’s Invariance Principle ([18], Chapter 2, Theorem 6.4),
the DFE P0 is globally asymptotically stable when bR0 6 1.

If R0 > 1, we define L2 = ee + (e + b)i. Then
L02jð4Þ ¼ e½ð1� arÞkis� ðeþ bÞeþ aei� þ ðeþ bÞ½ee� ðaþ bþ bÞiþ ai2�

¼ eð1� arÞkisþ eaei� ðeþ bÞðaþ bþ bÞiþ aðeþ bÞi2

¼ i½eð1� arÞks� ðeþ bÞðaþ bþ bÞ þ eaeþ aðeþ bÞi�: ð10Þ
Observe that L02jð4Þ > 0 for s sufficiently close to b/(ra + b) except when e = i = 0. Solutions starting sufficiently close to P0

leave a neighborhood of P0 except those on the invariant s-axis, where (4) reduces to s0 = b � (ra + b)s and thus s(t) ? b/
(ra + b) as t ?1, completing the proof. h

It points out here that the unstable property of DFE P0 when R0 > 1 can also be proved by the eigenvalue analysis of (7).
The threshold parameters R0 and bR0 govern whether the infected fractions (i.e., e(t), i(t)) vanish in time locally and globally,
respectively. Reducing R0 to values less than unity can ‘‘eradicate” disease with a small magnitude. However, when bR0 is
adjusted less than or equal to unity, the disease can be ‘‘eradicated” even with a large magnitude. R0 and bR0 can be inter-
preted epidemiologically as the disease transmission by contacts being strengthened through both the increase of suscepti-
ble inflow and the increase of the infectious individuals coming from the exposed ones, while weakened through the outflow
of the infected and the susceptible fractions. It is found that both R0 and bR0 are decreasing functions of r. R0 increases with
a if r < b/(1 + b) and decreases with a if r > b/(1 + b), which imply that the high vaccination rate with low vaccine efficacy is
likely to make the disease ‘‘persistent”. bR0 decreases as the vaccination rate a increases.

3. Disease ‘‘persistence’’

3.1. Uniform persistence

In this sub-section, we attempt to explore the uniform persistence of (4) when the threshold parameter R0 > 1, by apply-
ing the acyclicity Theorem (see [19, p. 18]).

Definition 3.1 [20]. System (4) is said to be uniformly persistent if there exists a constant 0 < c < 1 such that any solution
(s(t), e(t), i(t)) with ðsð0Þ; eð0Þ; ið0ÞÞ 2 D�satisfies
minflim inf
t!1

sðtÞ; lim inf
t!1

eðtÞ; lim inf
t!1

iðtÞgP c: ð11Þ
Let X be a locally compact metric space with metric d and let C be a closed nonempty subset of X with boundary @C and
interior C�. Clearly, @C is a closed subset of C. Let Ut be a dynamical system defined on C. A set B in X is said to be invariant if
U(B, t) = B. Define M@: = {x 2 @C:Utx 2 @C, " t P 0}.

Lemma 3.1 [19]. Assume

(A1) Ut has a global attractor;
(A2) There exists an M = {M1, . . .,Mk} of pair-wise disjoint, compact, and isolated invariant set on @C such thatS S
(a) x2M@
xðxÞ � k

j¼1Mj;

(b) No subsets of M form a cycle on @C;
(c) Each Mj is also isolated in C;
(d) WsðMjÞ

T
C�¼/ for each 1 6 j 6 k, where Ws(Mj) is the stable manifold of Mj. Then Ut is uniformly persistent with

respect to C�.
In this application, let
C ¼ D :¼ fðs; e; iÞ 2 R3
þj0 6 sþ eþ i 6 1g;

C�: ¼ fðs; e; iÞ 2 E : e; i > 0g; and @C ¼ C=C�
Obviously, M@ = @C.
We next show M = {P0}, x(x) = {P0} for all x 2M@. On @C, system (4) reduces to s0 = b � (ra + b)s, in which sðtÞ ! b

raþb as
t ?1. It is concluded that M = {P0}, x(x) = {P0} for all x 2M@, which indicates that hypothesis (a) and (b) hold. When
R0 > 1, the disease-‘‘free” equilibrium (DFE) P0 is unstable from Theorem 2.1, and also Ws(M) = @C. Hypothesis (c) and (d)
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are then satisfied. Due to the ultimate boundedness of all solutions to system (4), there always admits a global attractor,
making (A1) true.

Theorem 3.2. When R0 > 1, system (4) is uniformly persistent.
3.2. Existence of the ‘‘endemic” equilibrium (EE)

Sub-section 2.3 shows that the disease-‘‘free” equilibrium (DFE) is globally asymptotically stable when R0 6 1. This im-
plies that there is no endemic equilibrium. The disease can be ‘‘wiped out” in the end. From the epidemiological perspective,
it is more important to investigate the existence of EE and its properties when R0 > 1.

Suppose that P�ðs�; e�; i�Þ 2 D�is an ‘‘endemic” equilibrium (EE). From (4), its coordinates should satisfy
b� ðraþ bÞs� � ð1� arÞki�s� þ ai�s� ¼ 0;

ð1� arÞki�s� � ðeþ bÞe� þ ae�i� ¼ 0;

ee� � ðaþ bþ bÞi� þ ai2
� ¼ 0:

ð12Þ
with s* > 0, e* > 0 and i* > 0. Adding the above equations leads to
ðraþ b� ai�Þð1� s� � e� � i�Þ ¼ bi� þ rað1� e� � i�Þ;
which gives the following range of i*
0 < i� < minf1; ðraþ bÞ=ag: ð13Þ
It is noted from (13) that when the excess death rate a is less than the product of vaccine coverage rate a and vaccine efficacy
r, or the natural birth rate b, or the sum of ra and b, i* will lie in the interval (0,1). Eliminating s* and e* from (12), i* satisfies.
ð1� arÞebki� þ ðai� � ðeþ bÞÞððaþ bþ bÞi� � ai2
� Þ

� ½raþ bþ ð1� arÞk� aÞi�� ¼ 0
) ððeþ bÞ � ai�Þððaþ bþ bÞ � ai�Þ½ðraþ bÞ þ ð1� arÞk� aÞi��
¼ ð1� arÞebk

) 1� a
eþ b

i�

� �
1� a

aþ bþ b
i�

� �
1þ ð1� arÞk� a

raþ b
i�

� �
¼ R0;

ð14Þ
where R0 is defined as in (8). Furthermore, s* and e* can be uniquely determined from i* by
s� ¼
b

raþ bþ ð1� arÞk� ai�
;

e� ¼
ðaþ bþ bÞi� � ai2

�
e

;

ð15Þ
In (15), e*, s* > 0 are, respectively, guaranteed by the fact that 0 < i* < 1 and R0 > 1 implying (1 + a(1 � r))k > a

Case i: Suppose a < min{ra + b,e + b}.From (13) we know that 0 < i* < 1. Define
f ðiÞ ¼ 1� ai
eþ b

� �
1� ai

aþ bþ b

� �
1þ ðð1� arÞk� aÞi

raþ b

� �
; ð16Þ
and then the roots of f(i) are i1 = (e + b)/a, i2 = (a + b + b)/a, and i3 = � (ra + b)/((1 � ar)k � a), all of which lie outside (0,1).
Moreover, f(0) = 1 and under the parameter restriction b P a; f ð1Þ ¼ ðeþ b� aÞðbþ bÞðraþ bþ ð1� arÞk� aÞ=
ððeþ bÞðaþ bþ bÞðraþ bÞÞ > R0: These observations lead to the conclusion that the line y ¼ R0 has exactly one intersection
(i*, f(i*)) with the function f(i) where i* satisfies (13).
Case ii: ra + b < a < b + �.

From (13) we know that 0 < i* < (ra + b)/a. If f raþb
a

� �
P R0, there is an unique positive root to (14). One can verify

that f raþb
a

� �
P R0 is equivalent to
ðra� eÞðra� a� bÞðraþ bÞP bae; ð17aÞ
) ðraÞ3 � ða� b� e� bÞðraÞ2 þ ðeðaþ bÞ � bðaþ bþ eÞÞðraÞ þ beb P 0: ð17bÞ
Next, we seek sufficient conditions that guarantee f raþb
a

� �
P R0. Define the left-hand side of (17b) as f1(ra). Obviously,

f1(0) P 0. And f1(1) > 0 if and only if
b P
ð1� eÞðaþ b� 1Þ
ð1� eÞð1� bÞ � a

¼: b0:
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Differentiating f1(x) with respect to x, we obtain that f1 reaches its local minimum value at
xmin ¼
aþ bþ e� bþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða� bþ e� bÞ2 � 3ðeðaþ bÞ � bðaþ bþ �ÞÞ

q
3

:

Since 0 6 ra < 1 (from assumptions in Section 1), then xmin P 1 makes inequality (17) true, namely, f raþb
a

� �
P R0. A straight-

forward calculation can verify that xmin is no less than the unity if
aþ bþ e� 3 P b: ð18Þ
In summary, regarding the existence and the number of the ‘‘endemic” equilibria (EE), we have

Theorem 3.3. Suppose that R0 > 1. System (4) has a unique ‘‘endemic” equilibrium P*(s*, e*, i*) with coordinates satisfying (14)
and (15) if
b P a;or ð19aÞ
ra < a� b;

maxfa� e; b0g < b 6 aþ bþ e� 3: ð19bÞ
3.3. Local stability of the EE

From (6) and (12), the Jacobian matrix compound matrix J(P) at the EE P* can take the form:
JðP�Þ ¼

� b
s�

0 �bþðraþbÞs�
i�

ð1� arÞki�
ð1�arÞki�s�

e�
ð1� arÞksþ ae

0 e �ee�þai2�
i�

0BBB@
1CCCA:
To show the locally asymptotical stability of the EE is equivalent to show that J(P*) is stable. Denote the diagonal matrix
Q = diag (i*, s*, s*). Obviously, J(P*) is similar to QJ(P*)Q�1, where
QJðP�ÞQ�1 ¼

� b
s�

0 � b
s�
þ raþ b

ð1� arÞks�
ð1�arÞki�s�

e�
ð1� arÞksþ ae

0 e �ee�þai2�
i�

0BB@
1CCA:
The matrix J(P*) is stable if and only if QJ(P*)Q�1 is stable, since similarity preserves the eigenvalues. It is observed that the
diagonal elements of the matrix QJ(P*)Q�1 are negative. An easy argument applying Geršgorin discs (see [21]) shows that it is
stable if it is diagonally dominant in rows. Set l1 = max{g1, g2, g3}, where
g1 ¼ �ra� b;

g2 ¼ 2ð1� arÞks� �
ð1� arÞki�s�

e�
þ ae�;

g3 ¼ e� ee�
i�
þ ai�;

ð20Þ
since �b/s* + ra + b < 0 from (15).
The last two equations of (12) can be rewritten as
i�s�
e�
¼ eþ b� ai�
ð1� arÞk ;

e�
i�
¼ aþ bþ b� ai�

e
;

ð21Þ
Substituting (21) into (20) yields
l1 ¼maxf�ra� b;�ðaþ bþ bÞ þ eþ 2ai�;2ð1� arÞks� þ aðe� þ i�Þ � ðbþ eÞg:
Assume 2bð1�arÞk
raþb 6 e 6 b. Since a 6 b, the last two elements inside the braces of last equation are negative. We then have

l1 < 0, which implies the diagonal dominance of QJ(P*)Q�1.
The following theorem summarizes the parameter restrictions on the local stability of the EE.

Theorem 3.4. Assume R0 > 1. When
a 6 b and
2bð1� arÞk

raþ b
6 e 6 b ð22Þ
the unique ‘‘endemic” equilibrium P* is locally asymptotically stable in D�.
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Locally asymptotical stability by means of eigenvalue analysis, may be of no practical significance for a real epidemiolog-
ical system since it merely guarantees stability relative to small perturbation of the initial state from an equilibrium. Ideally
we would like to establish global stability result relating to all possible displacements of the initial state in the feasible
region.

3.4. Global stability of the EE

In this sub-section, we apply a geometric approach developed by Smith [22] and Li-Muldowney [23] to investigate the
globally asymptotic stability of the unique endemic equilibrium P* when R0 > 1. Here we omit the detailed introduction
of this approach and refer readers to [23,22].

Let x� fðxÞ 2 Rn be a smooth vector field defined for x in an open set D � Rn. We define a differential equation as
x0 ¼ fðxÞ; x 2 D; ð23aÞ
and its corresponding periodic linear system
z0 ¼ @f ½2�

@x
ðpðtÞÞzðtÞ; ð23bÞ
where @f½2�

@x is the second additive compound matrix ([16,23,12]) of @f
@x and H = {p(t):0 6 t 6x} is the periodic orbit of (23a).

The key steps in the proof are summarized as follows (see [16,23,12], [22]):

(i) (23a) has a compact absorbing set K � D;
(ii) (23a) has a unique equilibrium �x in D;

(iii) (23a) satisfies the Poincaré–Bendixson property;
(iv) (23b) is asymptotically stable for each periodic solution x = p(t) to (23a) with p(0) 2 D;
(v) ð�1Þndet @f

@x ð�xÞ
� �

> 0.

The main idea of the geometric approach by Smith and Li-Muldowney [23,22] is to rule out the existence of periodic solu-
tions inside the variant region D and then all trajectories of go to the unique EE P* from the Poincare–Bendixson property
[24]. Now, we apply the methods outlined above to (4) and try to ind out the parameter restrictions. The Jacobian matrix
@f
@x of (4) at an arbitrary point P(s, e, i) in D is given by (6). The second of [2] additive compound matrix @f½2�

@x is calculated as
@f ½2�

@x
¼

a11 ð1� arÞksþ ae ð1� arÞks� as

e a22 0
0 ð1� arÞki a33

0B@
1CA; ð24aÞ
where
a11 ¼ �2b� ra� ð1� arÞki� eþ 2ai;
a22 ¼ �2b� ra� ð1� arÞki� a� bþ 3ai;

a33 ¼ �2b� e� a� bþ 3ai:

ð24bÞ
We then can write (23b) for (4) with respect to a periodic solution p(t) = (s(t),e(t),i(t))as
z01 ¼ ð�2b� ra� ð1� arÞki� eþ 2aiÞz1 þ ½ð1� arÞksþ ae�z2 þ ½ð1� arÞks� aa�z3;

z02 ¼ ez1 þ ð�2b� ra� 1ð1� arÞki� a� bþ 3aiÞz2

z03 ¼ ð1� arÞkiz2 þ ð�2b� e� a� bþ 3aiÞz3

ð25Þ
The uniform persistence from sub-Section 3.2 and the boundedness of D tell that (4) has a compact absorbing set K � D�(see
[20]). When R0 > 1, from Theorem 3.1, we know that (4) has a unique EE in D�under the conditions (19a) or (19b). System (4)
satisfies the Poincaré–Bendixson property since it is competitive in the convex set K � D�(see [24, Chapter 3], Theorem 4.1).
As to the definition of competitive system and the proof of competitiveness of (4) in D�, we here omit the details and refer
readers to Section 2 of Li et al. [16], where a similar technique is performed. The locally asymptotical stability of the EE
P* in Theorem 3.4 implies det @f

@x ðP�Þ
� �

< 0.
We now construct the following Lyapunov function to demonstrate the asymptotical stability of the periodic linear sys-

tem (25).
Vðz1; z2; z3; s; e; iÞ ¼ sup jz1j;
e
i
jz2j þ

ð1� arÞk� a
ð1� arÞk jz3j

� �	 

: ð26Þ
From Theorem 3.2, we know that the orbit c of p(t) remains at a positive distance from @D. Hence there exists a constant c > 0
such that
Vðz1; z2; z3; s; e; iÞP cjðz1; z2; z3Þj; ð27Þ



2692 C. Sun, Y.-H. Hsieh / Applied Mathematical Modelling 34 (2010) 2685–2697
for all ðz1; z2; z3Þ 2 R3 and (s,e,i) 2 c. We next calculate the right-hand derivative of V(t), which is described in Ref. [25] and
obtain the following differential inequalities:
Dþjz1ðtÞ 6 �ðraþ 2bþ eþ ð1� arÞki� 2aiÞjz1ðtÞj
þ ðð1� arÞksþ aeÞjz2ðtÞj þ ðð1� arÞks� asÞjz3ðtÞj

¼ �ðraþ 2bþ eþ ð1� arÞki� 2aiÞjz1ðtÞj

þ ð1� arÞksi
e

þ ai
� �

e
i
jz2ðtÞj ð28aÞ

þ ð1� arÞk� a
ð1� arÞk � ð1� arÞksi

e
e
i
jz3ðtÞj

6 �ðraþ 2bþ eþ ð1� arÞki� 2aiÞjz1ðtÞj

þ ð1� arÞksi
e

þ ai
� �

e
i
jz2ðtÞj þ

ð1� arÞk� a
ð1� arÞk jz3ðtÞj

� �
Dþjz2ðtÞj 6 ejz1ðtÞj � ð2bþ raþ aþ bþ ki� 3aiÞjz2ðtÞj; ð28bÞ
Dþjz3ðtÞj 6 ð1� arÞkijz2ðtÞj � ð2bþ eþ aþ b� 3aiÞjz3ðtÞj: ð28cÞ
Using (28b) and (28c), we have
Dþ
e
i
jz2ðtÞj þ

ð1� arÞk� a
ð1� arÞk jz3ðtÞj

� �

¼ e0

e
� i0

i

� �
e
i
jz2ðtÞj þ

ð1� arÞk� a
ð1� arÞk jz3ðtÞj

� �

þ Dþ
e
i
jz2ðtÞj þ

ð1� arÞk� a
ð1� arÞk jz3ðtÞj

� �

6
e0

e
� i0

i

� �
e
i
jz2ðtÞj þ

ð1� arÞk� a
ð1� arÞk jz3ðtÞj

� �
þ e

i
ejz1ðtÞj � ð2bþ raþ aþ b� 2aiÞjz2ðtÞjð Þ

� ð1� arÞk� a
ð1� arÞk ð2bþ eþ aþ b� 3aiÞjz3ðtÞjÞ

6
e0

e
� i0

i

� �
e
i
jz2ðtÞj þ

ð1� arÞk� a
ð1� arÞk jz3ðtÞj

� �
þ e

i
ejz1ðtÞj � ð2bþ aþ b� 2aiÞjz2ðtÞjð Þ

� ð1� arÞk� a
ð1� arÞk ð2bþ aþ b� 3aiÞjz3ðtÞj

6
ee
i
jz1ðtÞj þ

e0

e
� i0

i
� 2b� a� bþ 3ai

� �
e
i
jz2ðtÞj þ

ð1� arÞk� a
ð1� arÞk jz3ðtÞj

� �
:

ð29Þ
Inequalities (28a) and (29) lead to
DþVðtÞ 6 maxfg1ðtÞgVðtÞ; ð30Þ
where
g1 ¼ �ra� 2b� ð1� arÞki� eþ 3aiþ ð1� arÞksi
e

;

g2 ¼
e0

e
� i0

i
� 2b� a� bþ 3aiþ ee

i
:

ð31Þ
We rewrite the last two equations of (4) as
ð1� arÞksi
e

þ ai ¼ e0

e
þ ðeþ bÞ;

ee
i
þ ai ¼ i0

i
þ bþ aþ b:

ð32Þ
Substituting (32) into (31) leads to
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g1 ¼ �ra� bþ 2ai� kð1� raÞiþ e0

e

6 �ra� bþ 2aiþ e0

e
;

g2 ¼ �bþ 2aiþ e0

e
:

ð33Þ
From (33) we obtain that
maxfg1; g2g 6 �bþ 2aiþ e0

e
;

and thus if 2a 6 b,
Z x

0
maxfg1; g2gdt 6 log eðtÞjx0 þ

Z x

0
ð2ai� bÞdt ¼ �

Z w

0
ð�2aiþ bÞdt ¼ �M < 0;
which implies that V(t) ? 0 as t ?1, and in turn that (z1(t), z2(t), z3(t)) ? 0 as t ?1by (27). As a result, the second com-
pound system (23b) is asymptotically stable and the periodic solution (s(t), e(t), i(t)) is asymptotically orbitally stable. This
verifies the condition (iv). Hence P* is globally stable in D�, which gives the following result.

Theorem 3.5. Assume R0 > 1. When
2a 6 b and
2bð1� arÞk

raþ b
6 e 6 b; ð34Þ
the unique ‘‘endemic” equilibrium P* attracts all trajectories of D except those on the invariant s-axis which converge to the disease-
‘‘free” equilibrium P0 along this axis.

Conditions (34) tell that the locally asymptotical stability of P* can not guarantee its global stability, which requires stric-
ter parameter restrictions, biologically, larger recruitment or inflow rate of susceptibles.

4. Epidemiology correlations of systems in proportion and in population

In the previous sections, we investigate the global dynamics of the reduced proportional system (4) and obtain the
parameter restrictions for disease ‘‘persistence” and ‘‘eradication”. Are these conclusions compatible with the original epi-
demic model (1)? And does disease ‘‘persistence” or ‘‘eradication” in system (3) or (4) imply disease persistence or eradica-
tion in model (1), respectively? In this section, we focus on finding out the correlations between them.

Let’s turn to the original model (1). Clearly, (1) is not well defined at (0,0,0,0), so following the technique by Smith [24]
we study the redefined system
S0 ¼ bN � kð1� aÞIS=N � ð1� rÞakIS=N � ðraþ dÞS,F1ðS; E; I;NÞ;
E0 ¼ kð1� aÞIS=N þ ð1� rÞakIS=N � ðdþ eÞ , F2ðS; E; I;NÞ;
I0 ¼ eE� ðaþ bþ dÞI,F3ðS; E; I;NÞ;
N0 ¼ ðb� dÞN � aI,F4ðS; E; I;NÞ;
F 01 ¼ F 02 ¼ F3 ¼ F 04 ¼ 0;whenðS; E; I;NÞ ¼ ð0; 0; 0; 0Þ;

ð35Þ
in its feasible region
D ¼ ðS; E; I;NÞ 2 R4
þ
��0 6 Sþ Eþ I 6 N

� 
:

Due to the boundedness of term IS
N around the origin in (35), we see that
lim
ðS;E;I;NÞ!0;0;0;0Þ

FjðS; E; I;NÞ ¼ 0; j ¼ 1;2;3;4:
We conclude that Fj(j = 1,2,3,4) are continuous functions on R4
þ ¼ fðS; E; I; NÞ : S; E; I; N P 0g. Straightforward computation

shows that system (35) are Lipschizian on D. Hence a solution of (35) with non-negative initial condition exists and is unique.
It is also easy to see that these solutions exist for all t P 0 and stay non-negative. When b � d 6 0 and a > 0, or b � d < 0 and
a > 0, the total population N(t) in system (35) will die out with the initial condition E(0) + I(0) > 0 due to the larger natural
death rate and disease-caused excess death. When b � d = 0 and a = 0, the total population size N(t) will remain constant so
that system (35) reduces to a SEIR model with constant population, whose dynamic behaviors are very similar to (3) or (4). In
the rest of this section, we assume that b � d > 0, a P 0 or b � d > 0, a = 0. The latter does not incorporate disease-related
death in population and the whole population will increase exponentially. Sections 2 and 3 show that the dynamics of sys-
tem (4) with a = 0 are similar to that with a > 0 except the parameter conditions for the existence of EE (see Theorem 3.3).

We now consider the case b � d > 0 and a > 0. For the convenience of readers, we summarize the existence and stability of
equilibria for system (4) in Table 1.



Table 2
Existence and stability of equilibrium for system (35).

Relationship between Ro and eRo # of Equilibria Type of equilibria Stability

R0 < eR0 1 Trivial Unstable

R0 > eR0 1 Trivial Stable

R0 ¼ eR0 1 Trivial/EE line Unstable/stable

Table 1
Existence and stability of equilibrium for system (4).

R0 bR0 Condition # of Equilibria Type of equilibria Respective stability

<1 >1 NA 1 DFE LAS
<1 61 NA 1 DFE GAS
>1 NA (22) 2 DFE/EE Unstable/LAS
>1 NA (34) 2 DFE/EE Unstable GAS
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‘‘GAS” denotes globally asymptotically stable
‘‘LAS” denotes locally asymptotically stable.
‘‘NA” is the abbreviation of ‘‘not applicable”.

Model (35) always has the trivial equilibrium ePo (0,0,0,0). We are interested in determining whether (35) has an endemic
equilibrium (EE). Suppose eP�ðeS�; eE�;eI�; eN�Þ is the EE of model (35). The right-hand side of (35) equal to zero (i.e.,
Fj = 0,j = 1,2,3,4) leads to
0 ¼ b� ðraþ dÞ
eS�eN� � ð1� arÞk

eI�eN� �
eS�eN� ;eS�eN� ¼ dþ e

kð1� arÞ �
aþ bþ d

e
;

eE�eN� ¼ aþ bþ d
e

�
eI�eN� ;eI�eN� ¼ b� d

a
:

Eliminating eS�; eE�;eI� and eN� from these equations leads to the following condition
b ¼ ðdþ eÞðaþ bþ dÞ
keð1� arÞ ðraþ dÞ þ ð1� raÞk

a
� ðb� dÞ

� �
:

which is equivalent to
eRo :¼ f
b� d

a

� �
¼ 1� b� d

eþ b

� �
1� b� d

aþ bþ b

� �
1þ b� d

a
� ð1� arÞk� a

raþ b

� �
¼ R0
where f(x) is the cubic polynomial defined in (16) in sub-Section 3.2.

Theorem 4.1. If eRo–R0, system (35) only has a trivial equilibrium eP0(0,0,0,0); if eR0 ¼ R0, system (35) has an equilibrium lineeL:
ðdþ eÞðaþ bþ dÞeN�
ke

;
ðb� dÞðaþ bþ dÞeN�

ae
;
ðb� dÞeN�

a
; eN�

 !

Denote the endemic equilibrium (EE) on eL as eP�ðeS�; eE�;eI�; eN�Þ.

We summarize the existence and stability of equilibria for system (35) in Table 2.
The stability conclusion in Table 2 can be obtained from the context below.
Theorem 2.1 shows that when bR0 6 0; ðsðtÞ; eðtÞ; iðtÞ; rðtÞÞ ! ðb=ðraþ bÞ;0;0;ra=ðraþ bÞÞ exponentially as t ?1. From

(2), we know that N0(t) = ((b � d) � ai)N. We therefore claim that N(t) increases exponentially due to the fact that i(t) ? 0
as t ?1(see [26]). The trajectories of S(t) and R(t) go to infinity following from the facts that s(t) = S(t)/N(t) ? b/(ra + b)
and r(t) = R(t)/N(t) ? r a/(ra + b) as t ?1,respectively. Consider the equation for E and I



Table 3
Limit values of variables in proportions and in population sizes for systems (4) and (35).

R0 bR0 R0 eR0 (s,e,i) (S, E, I, R, N)

NA 61 61a NA (b/(ra + b),0,0) (1,0,0,1,1)
NA 61 >1a NA (b/(ra + b),0,0) (1,1,1,1,1)
> 1 NA NA > RH

0 (s*,e*, i*) (1,1,1,1,1)
> 1 NA NA < RH

0 (s*,e*, i*) (0, 0, 0, 0, 0)
> 1 NA NA ¼ RH

0 (s*,e*, i*) eS�; eE�;eI�; eR�; eN�
‘‘NA” is the abbreviation of ‘‘not applicable”.
Note: When R0 > 1, all the conclusions are obtained under the conditions (34).

a Necessary condition for system (35), but not for system (4).
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E0 ¼ �ðdþ eÞEþ ð1� arÞbk
raþ b

I þ ð1� arÞk s� b
raþ b

� �
I;

I0 ¼ eE� aþ bþ dð ÞI;
ð36Þ
which is a perturbation of a linear system. Since the perturbation decays exponentially as t ?1, the perturbed system (36)
behaves almost the same as the principal part as t ?1 (see [26]). Through the characteristic equation analysis of (36) at
(0,0), we have the following two eigenvalues
l1 ¼
�ðaþ bþ eþ 2dÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðaþ bþ eþ 2dÞ2 � 4co

q
2

;

l2 ¼
�ðaþ bþ eþ 2dÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðaþ bþ eþ 2dÞ2 � 4co

q
2

;

ð37Þ
where c0 = [(e + d)(a + b + d) � be(1 � ar)k/(ra + b)].
Let R0 :¼ beð1� arÞk=ððraþ bÞðeþ dÞðaþ bþ dÞÞ be another parameter threshold for the population size model (35).

From (37), l1 > 0 if R0 > 1. And it follows that (E(t), I(t)) goes to infinity as t ?1. When R0 < 1, we have l1,2 < 0 and
(E(t), I(t)) goes to (0, 0) as t ?1.

From the discussion above, we summarize the results as follows.

Theorem 4.2. If assume R0 6 1. Then S(t), R(t), N(t) go to infinity exponentially with exponential rate b � d as t ?1. Moreover,
(E(t), I(t)) goes to (0,0) or infinity as t ?1 when R0 < 1 or R0 > 1, respectively.

Next, we consider the dynamical behavior of S(t), E(t), I(t), R(t), N(t) when R0 > 1. Since eR0 ¼ f b�d
a

� �
and R0 ¼ ðfi�Þ, from

the analysis of function f in sub-Section 3.2, we know that R0 > R0 or eR0 < R0 are equivalent to the relations b � d � ai* > 0
or b � d � ai* < 0, respectively. Eq. (2) can be rewritten as
N0 ¼ ½ðb� d� ai�Þ � aðiðtÞ � i�Þ�N: ð38Þ
Under the parameter restrictions (34), using the global stability of (s*,e*,i*) in Theorem 3.5, we conclude that if b � d � ai* > 0,
N(t) ?1(t ?1) in (38), which implies (S(t), E(t), I(t), R(t)) ? (1,1, 1, 1) as t ?1; if b � d � ai* < 0, N(t) ? 0(t ?1) in
(38), which implies (S(t), E(t), I(t), R(t)) ? (0,0,0,0) as t ?1; if b� d� ai� ¼ 0;NðtÞ ! eN�ðt !1Þ in (38), which implies
ðSðtÞ; EðtÞ; IðtÞ;RðtÞÞ ! ðeS�; eE�;eI�; eN�Þ.

We then have the following results.

Theorem 4.3. Suppose R0 > 1 and conditions (34) being satisfied. As t ?1 when eR0 > R0 (S(t), E(t), I(t), R(t),
N(t)) ? (1,1,1,1,1); when eR0 < R0 (S(t), E(t), I(t), R(t)) ? (0,0,0,0); when eR0 ¼ R0 ðSðtÞ; EðtÞ; IðtÞ;RðtÞÞ ! ðeS�; eE�;eI�; eN�Þ.

When b � d > 0 and a = 0, system (35) has only the trivial equilibrium eP� (0,0,0,0). In this case, (S(t), E(t), I(t), R(t),
N(t)) ? (1,1,1,1,1) as t ?1. Hence the trivial equilibrium eP� is unstable.

Finally, we summarize the limiting values of variables in proportions and in population sizes for system (4) and system
(35) in Table 3.

5. Discussion

In this paper, we propose an SEIR model with varying population size and vaccination strategy towards susceptible indi-
viduals. The vaccine effectiveness is also taken into account. We investigate the global dynamics of the reduced proportional
system and the original population model, respectively, and give out the dynamic correlations between the two.

We first note that the parameter threshold for proportions R0 :¼ ekbð1� arÞ=ðeþ bÞðraþ bÞðaþ bþ bÞ has a clear epide-
miological interpretation for system (3), where b/(ra + b) is the susceptible fraction at DFE, P0, which, multiplied by k(1 � ar)
gives the fraction of infections caused by an infective per time unit; e/(e + b) is the probability for the infected fraction
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becoming infective; and 1/(a + b + b) is the mean infectious period of an infective fraction. Subsequently, the product of the
three terms above yields the expected infective fraction generated by a given infective fraction i(t). We also note that the
threshold considerations obtained for fractions are in general different from that of the population itself. See [8,9] for de-
tailed discussions under similar scenarios. Similarly, the parameter threshold for population sizes
R0 :¼ bekð1� arÞ=ððraþ bÞðeþ dÞðaþ bþ dÞÞ also can be interpreted biologically. Consider the system for population sizes
in (1), b/(ra + b) is again the susceptible fraction at DFE P0 which is multiplied by k(1 � ar) to give the fraction of infections
caused by an infective per time unit; e/(e + d) is the probability for the infected individual becoming infective; and 1/
(a + b + d) is the mean infectious period of an infective individual. The product of the above three terms yields the number
of individuals infected by the infective population at time t, I(t).

We have shown in Theorem 2.1 that when bR0 6 1, the DFE P0 is globally asymptotically stable. However, R0 < 1 implies
that P0 is locally asymptotically stable. For the case R0 > 1, P0 is unstable and system (4) is uniformly persistent. We obtain
sufficient conditions for the existence and uniqueness of the ‘‘endemic” equilibrium P*. Under these conditions we further
investigate the global dynamics of the system in questions.

When the product of the vaccination rate and the vaccine efficacy ra < bð2k�eÞ
2bkþe , which violates the assumption of Theorem

3.4, the EE P* may be unstable. Consequently there may exist stable periodic solutions around P* in system (4), which also
makes considerable difference in the dynamics of the corresponding system (35) with varying population size. Hence the
substantially low product of vaccination rate or low vaccine efficacy (e.g., ra < bð2k�eÞ

2bkþe ) may lead to complicated dynamics
for the system in question. We leave these problems for future investigation.

Also, we note from (2) or (35) that, when b < d, the inflow rate exceeds the outflow rate (the excess disease-related death
is not included) and, subsequently, the total population N(t) must decrease monotonically to zero, regardless of whether it is
asymptotically in endemic fractions or not. Therefore, the analysis for this case is of little practical significance. When the
parameter threshold bR0 6 1, the disease ‘‘die out” the proportional system (4). However, this phenomenon only occurs in
the population size system (35) when R0 6 1 and the disease explodes when R0 > 1 (see Table 3). When R0 > 1, the disease
in proportional system (4) goes to the ‘‘endemic” or ‘‘persistent” state. However, this phenomenon only happens to the case
when R0 ¼ eR0. For R0 > eR0 and R0 < eR0 the disease in the population size system (35) goes extinct and explodes,
respectively.

We have to point out in the end that in this paper we do not compare the continuous vaccination strategy to pulse vac-
cination since the pulse vaccination strategy consisting of periodical repetitions of impulsive vaccinations in a population
and all vaccine doses are applied in a very short time comparing with the dynamics of targeted diseases. Anderson and
May [2] guided the design of two pulse vaccination programs (two dose strategy for measles in Great Britain), and this strat-
egy was started in Canada in 1996/97. The pulse vaccination sometimes is cost-effective and indeed yields great success in
controlling some well-known viral childhood diseases, such as measles, smallpox, chickenpox, etc. However, for some newly
emerging diseases, such as influenza A H1N1 (Swine Flu) outbreak early 2009 in Mexico, the viral stain is unknown or par-
tially known, and in addition, the vaccine is not very reliable and its effectiveness is low to some extent, one or two dose
pulse vaccinations seem not to be enough in disease eradication. Mathematically, the disease-free equilibrium states of epi-
demic models with continuous vaccination may be periodic solutions of impulsive models due to the introduction of pulse
vaccination.
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