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Urbanization is an important factor contributing to the global spread of dengue in recent decades, especially in
tropical regions. However, the impact of public transportation system on local spread of dengue in urban settings
remains poorly understood, due to the difficulty in collecting relevant locality, transportation and disease inci-
dence data with sufficient detail, and in suitably quantifying the combined effect of proximity and passenger
flow. We quantify proximity and passenger traffic data relating to 2014–2015 dengue outbreaks in Kaohsiung,
Taiwan by introducing a “Risk Associated with Metro Passengers Presence” (RAMPP), which considers the pas-
senger traffic of stations located within a fixed radius, giving more weight to the busier and/or closer stations.
In order to analyze the contagion risk associated with nearby presence of one or more Kaohsiung Rapid Transit
(KRT) stations, we cluster the Li's (the fourth level administrative subdivision in Taiwan) of Kaohsiung based
on their RAMPP value using the K-means algorithm.We then perform analysis of variance on distinct clusterings
and detect significant differences for both years. The subsequent post hoc tests (Dunn) show that yearly inci-
dence rate observed in the areas with highest RAMPP values is always significantly greater than that recorded
with smaller RAMPP values. RAMPP takes into account of populationmobility in urban settings via the use of pas-
senger traffic information of urban transportation system, that captures the simple but important idea that large
amount of passenger flow in and out of a station can dramatically increase the contagion risk of dengue in the
neighborhood. Our study provides a newperspective in identifying high-risk areas for transmissions and thus en-
hances our understanding of how public rapid transit system contributes to disease spread in densely populated
urban areas, which could be useful in the design of more effective and timely intervention and control measures
for future outbreaks.

© 2017 Elsevier B.V. All rights reserved.
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1. Introduction
Dengue fever is a vector-borne infectious disease mainly spread
by mosquitoes Aedes aegypti, and Aedes albopictus to a lesser degree.
Dengue is currently considered an international public health emer-
gency (WHO and TDR, 2009) because of its extremely fast diffusion
rate. According to a recent estimate, around 390 million people are
infected annually with dengue virus worldwide (Bhatt et al., 2013).
Dengue is considered the most important arboviral disease of
humans, with estimated over half of the world's population living
in areas of contagion risk (Gubler, 2011). The frequency and magni-
tude of dengue epidemic have increased dramatically during the
past 40 years, during which time both the dengue virus and the
mosquito vectors have expanded geographically in most tropical
and even some subtropical regions of the world. Modern urbaniza-
tion in the recent decades, especially in the tropical and subtropical
regions, stood out as one of the principal drivers of the epidemic
dengue, along with globalization and lack of effectivemosquito con-
trol (Gubler, 2011).

The abundance of reported cases is often not sufficient to quantify the
risk of dengue infection, neglecting for instance the impact of human be-
havior (Wen et al., 2015). Moreover, in addition to environmental fac-
tors, the extensive spread of the disease might be explainable by other
factors (Wen et al., 2012; Hsieh et al., 2013). The importance of human
mobility affecting infectious disease spread and emergence iswidely rec-
ognized (Prothero, 1977; Wilson, 1995; Colizza et al., 2007; Hsieh et al.,
2007; Khan et al., 2009). In particular, the impact of public transportation
network on local spread of infectious diseases, especially that of Tubercu-
losis, has been extensively studied (Tatem et al., 2006; Xu et al., 2013;
Horna-Campos et al., 2007; Barrett et al., 2008; Edelson and Phypers,
2011). Recent studies suggest that the routine movement of individuals
could potentially enhance dengue transmission, as it can easily go be-
yond the dispersal range of mosquito population, resulting in large-
scale outbreaks (Wen et al., 2012; Benedict et al., 2007; Kan et al.,
2008; Adams and Kapan, 2009; Saba et al., 2014a, 2014b).

Furthermore, the spatial identification of dengue risk in urban areas,
where highest incidence often occurs, is essential to elaborate effective
control measures (Wen et al., 2015), and it can be performed more ef-
fectively by not overlooking the important role of human mobility
(Prothero, 1977; Adams and Kapan, 2009; Stoddard et al., 2009). In par-
ticular, it has been suggested that commuters, if they are infected, can
play an important role by enhancing the pace of diffusion (Wen et al.,
2012), and that the “transport interfaces” (as such a metro station)
can beused to better evaluate environmental exposure in epidemiologic
research (Perchoux et al., 2013). Despite this increasing interest amidst
the aforementioned importance of modern urbanization to the spread
of dengue, however, there has been no study on the impact of public
metro transportation system on local spread of dengue in urban set-
tings, to our best knowledge. It is most likely due to the difficulty in
collecting relevant locality, transportation and disease incidence data
with sufficient detail and more importantly, in suitably quantifying
the combined effect of proximity and passenger flow.

Straddling the Tropic of Cancer, tropical southern Taiwan has favor-
able climate conditions for proliferation of Aedes aegypti, and conse-
quently dengue outbreaks are quite frequent. The most affected area is
Kaohsiung City, which accounted for more than half of all dengue cases
reported over the island in the last 18 years (Taiwan CDC, 2016). More-
over, the number of reported dengue cases in Kaohsiung has increased
dramatically in the past two years (2014–2015). The July 2014 gas explo-
sion in Kaohsiung had surely contributed greatly to the recording-
breaking DENV-1 outbreak in Kaohsiung in 2014 (Wang et al., 2016,
2015). However, there were neither any such catastrophic events nor
any unusual climatological event, such as typhoon, that could have led
to the even more severe outbreak in Kaohsiung in 2015. Moreover,
each of these two massive local outbreaks resulted in more reported
cases than the total case number of all previous years in Kaohsiung
before 2014. Consequently, question arises as to what factors could
have contributed to the local spread of the disease.

Several studies have been conducted to investigate the spatial distri-
bution of dengue cases in Kaohsiung. For examples, to evaluate the in-
fluence of population density, proximity to transportation arteries and
water bodies (Hsueh et al., 2012), to analyze the geographical heteroge-
neities in dengue-mosquito and dengue-human relationships (Lin and
Wen, 2011), and to identify hot spots (Lin et al., 2012) and risk areas
(Wen et al., 2006) for transmission. Moreover, the most densely popu-
lated districts near the city central area with multiple Kaohsiung Rapid
Transit (KRT) stations, Lingya, Qianzhen, and particularly Sanmin, have
also had the highest dengue fever incidence every year in Kaohsiung.

Our aim is to investigate the role of the KRT, with N50million passen-
gers yearly in recent years (KCGSTAT, 2016), as a possible contributing
factor to the spread of dengue in the areas surrounding the KRT system.
Utilizing geographic information system (GIS) tool, we examine the geo-
graphical distribution of the two epidemics in 2014 and 2015 to evaluate
the relationship between dengue incidence rate and proximity to the
KRT stations. Moreover, we include in our analysis the passenger traffic
information, i.e. the number of people entering and exiting each KRT sta-
tion.We assume that the impact of the transportation system on the dis-
ease spreading process: (i) decreases with distance, but also (ii) varies
fromone stop to another so thatmore users imply greater contagion risk.

2. Materials and methods

2.1. Data

In this study, we adopt “Li” (the fourth level administrative subdivi-
sion in Taiwan) as the primary unit of observation. We downloaded
the polygon shapefile representing the Li's of the special municipality
of Kaohsiung, from the geographic database available at the Taiwan
Government Open Data Platform website (Taiwan NDC, 2016a).
Similarly, we retrieved the point shapefile of the KRT stations from the
Ministry of Transportation and Communications (Taiwan MOTC, 2016).
The number of dengue fever cases reported in each Li was collected
from the Taiwan Government Open Data Platform website (Taiwan
NDC, 2016b). We focus on the epidemics that occurred in 2014 and
2015, as they were the most severe epidemics in the last 20 years, total-
ing 14,970 and 19,704 cases, respectively.

The Civil Affairs Bureau of the Kaohsiung City Government website
(KCGCABU, 2016) provides the demographic trend at Li level on a
monthly basis. The population data at the end of the years were then
retrieved to calculate the incidence rate, defined by the cumulative
number of cases per 100,000 inhabitants of each Li from February 15
to the end of the year. The area of each Li was subsequently measured
by means of the open source geographic information system QGIS
(version 2.14.2-Essen) from official government polygon shapefile of
the Li's, in order to obtain the corresponding yearly population density.
The monthly traffic volume of each KRT station, i.e. the number of pas-
sengers entering and exiting, is available at the Department of Statistics
of the Kaohsiung City Government website (KCGSTAT, 2016).

2.2. Proximity and traffic volume: calculation of RAMPP

The KRT currently has two lines: Red line with 24 stations that runs
north south and Orange line with 15 stations that runs east west. We
focus on the Li's within a 1-km radius from at least one KRT station,
approximating the station-Li distance as follows. Using QGIS, we deter-
mine the centroid of each Li and create 10 circles (or buffers in GIS termi-
nology) around each station of radius varying from 100m to 1 kmwith a
100meter step.We then identify, for each station, the Li's with centroids
contained in each of its 10 annuli (i.e. the ring-shaped regions bounded
by two consecutive concentric circles). Finally, we define the station-Li
distance d(s,l) as the outer radius of the annulus to which the
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corresponding centroid belongs. In otherwords, we consider a radial dis-
tance, rounded up to the nearest 100 m.

Sincemost of the circles overlap, some Li's are located in the proxim-
ity of more than one KRT station. Fig. 1 provides an example of the
station-Li distance d(s,l). Here two KRT stations belonging to the Red
Line are displayed, namely “Kaohsiung Arena” and “Aozihdi”, together
with six (out of 10) of their circles from 500 m to 1000 m. Five Li's (in
yellow) are located within 1 km from at least one of the two stations,
namely “Xinzhong”, “Huafeng”, “Mingcheng”, “Xinshang”, and “Longzi”.

We also include one Li in which a station is located but is 1.01 km
from the centroid of the Li (“Hongnan”, located in the Nanzi District).

We quantify the proximity and passenger traffic information for each
Li, by introducing an index that enables us to quantify the contagion risk
associatedwith the nearby presence of one ormore KRT stations.We call
this index “Risk Associated with Metro Passengers Presence” or RAMPP
for short. RAMPP takes into account, simultaneously, the passenger traf-
fic of all KRT stations located within a fixed radius as well as their actual
distance, while giving more weight to the busier and/or closer stations.

We adopt the sum of the monthly traffic volume of each KRT station,
recorded fromMarch to December, as the reference datum for each year.
Thanks to these data, the RAMPP index is calculated for each Li applying

the following formula: RAMPPðl; yÞ ¼ ∑nl
i¼1

tvðSi ;yÞ
dðSi ;lÞ , where {Si}l is the set of

stations fallingwithin 1 km from Li l, nl is the cardinality of {Si}l, tv(Si,y) is
the traffic volume of Si over year y, and d(Si, l) is the distance between Si
and l. It is clear from its definition that the RAMPP: (i) adds up the effect
of all the stations within a given radius, (ii) decreases with distance and
(iii) increases with traffic volume.
2.3. Statistical analysis

Preliminary, the relationship between yearly incidence rate
and RAMPP is evaluated by calculating the Spearman's correlation
Fig. 1. Example of the station-Li distance d(s,l) of two stations (“Kaohsiung Arena” and “Aozih
1000 m, in different shades of red. Five Li's (“Xinzhong”, “Huafeng”, “Mingcheng”, “Xinshang”
coefficient, and the result is compared to that obtained between yearly
incidence rate and population density.

We cluster the Li's according to their RAMMP value, by applying the
K-means method (Hartigan and Wong, 1979), in order to minimize the
variability within clusters and maximize the variability between
clusters. The within-groups sum of squared errors is then computed to
assess the clustering quality for K = 2 to 10. Subsequently, a one-way
analysis of variance on ranks (i.e. the Kruskal-Wallis' test) is carried out
on the yearly incidence rate data, considering as a factor the grouping
provided by the K-means algorithm. Finally, we use the Dunn's test
(with Šidák adjustment) as a post hoc test. Statistical analyses are carried
out for the two epidemics in 2014 and 2015 using the RStudio software
(version 0.99.893).

3. Results

Following the procedure described above and illustrated in Fig. 1, we
select 314 Li's (out of a total number of 891 Li's in Kaohsiung). More-
over, for each of these Li's we identify all stationswithin 1 kmof its cen-
troid, again using the previously described distance. The cases reported
in these 314 Li's within close proximity of the KRT system, account for
almost half of the total case number reported in Kaohsiung in 2014
and 2015, or more precisely, 43.41% (6499 cases) and 46.78% (9219
cases), respectively. For illustration, Fig. 2 provides a geographic map
of the 314 Li's with respective incidence rates in 2014 and 2015. The
frequency distribution of the Li's by yearly dengue incidence rate in
2014–2015 is also shown in Fig. 3.

We make use of the RAMPP index, in order to differentiate the
weight of the KRT stations, based on their traffic volume. Since it
is reasonable to suppose that the busiest stations are usually located in
densely populated areas, we first compare the correlation between
RAMPP and yearly incidence rate with the correlation between
population density and yearly incidence rate, for both years. Thus, we
di”) belonging to the Red Line together with six (out of 10) of their circles from 500 m to
and “Longzi” in yellow) are located within 1 km from at least one of the two stations.



Fig. 2. Geographic map of 314 Li's in Kaohsiung with respective incidence rates in 2014 and 2015.
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have four Spearman's coefficients. The result shows that, using RAMPP,
the correlation coefficient is higher in both 2014 (0.25 vs. 0.22 – p-
values ≪ 0.05) and 2015 (0.26 vs. 0.21 - p-values ≪ 0.05). The K-
means method is then applied for K = 2 to 10 on both 2014 and 2015
data, and the within-groups sums of squared errors are displayed in
Fig. 4.
Fig. 3. The frequency distribution of the Li's by yearly dengue incidence
Since for K N 4, the effect on the sum of squared errors is negligible,
we opt to perform the successive analyses, taking into account three and
four clusters, respectively. Table 1 shows the RAMPP mean value for
each clustering solution, while the frequency distribution of the Li's
with average and standard error of yearly incidence rate for each
RAMPP-based cluster is given in Table 2.
rate. Orange bars refer to 2014 data; yellow bars refer to 2015 data.



Fig. 4. Evaluation of the K-means clustering: within group sum of squared errors as a function of the number of clusters.

Table 2
The frequency distribution of the Li's with average and standard error of yearly incidence
rate, for each RAMPP-based cluster.
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As an illustrative example, for the 2014 epidemic the 314 Li's belong-
ing to four different RAMPP-based clusters are colored in four shades of
gray from the darkest shade denoting the cluster with the highest
RAMPP mean value, as shown in Fig. 5.

For the case K=4, two interactivemaps are provided as Supplemen-
tary Files, displaying simultaneously the yearly incidence rate and the
belonging RAMPP-based cluster of each Li.

For both years and for each clustering solution, the normality of
data is determined, by applying the Shapiro-Wilk's test on the resid-
uals of the linear model, while the variance homogeneity is assessed
via the Levene's test. The data normality requirement is not met (p-
values≪ 0.05), while the variance homogeneity assumption is large-
ly satisfied (p-values ≫ 0.05). Subsequently, four Kruskal-Wallis'
tests are performed, adopting the RAMPP-based classification as
the independent factor, with significant differences detected in
both 2014 (p-value = 4.99E−05 for K = 3, p-value = 3.47E−05
for K = 4) and 2015 datasets (p-value = 5.51E−05 for K = 3, p-
value = 2.90E−04 for K = 4).

Consequently, it is possible to apply the Dunn's post hoc test (with
Šidák adjustment), in order to compare the group means, as given in
Fig. 6 for 2014–2015.

Considering K = 3, the outcome of the analysis conducted on the
2014 data shows that the (average) yearly incidence rate observed in
Cluster 3, i.e. the cluster collecting the Li's with the highest RAMPP
Table 1
RAMPPmean values of the clusters identified by the K-means algorithm for
K = 3 and K = 4.

K Cluster
number

RAMPP mean value

Year
2014

Year
2015

3 1 4736.37 4530.20
2 15,786.94 15,603.40
3 30,483.59 30,058.79

4 1 3285.49 3165.45
2 8778.27 8577.08
3 17,931.20 17,803.79
4 31,667.23 31,235.74
values, is always significantly greater than that recorded in the clusters
with small RAMPP values (Table 3). In 2015, no significant difference is
detected between Cluster 3 and Cluster 2, but both are significantly
higher than Cluster 1 (Table 4).

For K = 4, the Dunn's test shows again that Cluster 4, i.e. the cluster
collecting the Li's with the highest RAMPP values, in 2014 exhibits an
yearly incidence rate significantly greater than that recorded in both
Cluster 1 and Cluster 2. A significant difference is also detected between
Cluster 3 and Cluster 1. Moreover, no significant difference can be
detected between Cluster 4 and Cluster 3, between Cluster 3 and Cluster
2, and between Cluster 2 and Cluster 1 (Table 5). Similarly, for the results
obtained for the 2015 data (Table 6).

4. Discussion

While the relationship between dengue incidence and population
density is well established (Murray et al., 2013), our use of RAMPP
takes into account the population mobility in an urban setting via the
use of passenger traffic information of a public transportation system,
providing a new perspective in identifying high risk areas for dengue
Year K Cluster
number

# of
Li's

Average yearly
incidence rate

Standard
error

2014 3 1 209 688.80 48.93
2 71 779.14 81.44
3 34 1115.24 109.58

4 1 143 639.18 55.80
2 86 749.59 79.56
3 56 855.25 92.59
4 29 1152.95 126.07

2015 3 1 208 1000.33 65.67
2 72 1333.93 128.77
3 34 1433.41 113.89

4 1 144 982.54 78.95
2 85 1083.57 101.00
3 56 1389.90 153.40
4 29 1428.41 117.88



Fig. 5.Geographicmap of 314 Li's in Kaohsiung. Based on 2014 data, the 314 Li's in four different RAMPP-based clusters are colored in four shades of gray from the darkest shade denoting
the cluster with the highest RAMPP mean value.
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transmission. The RAMPP index reflects the population density, as the
location of the stations is planned to provide easy access to as many
people locally as possible, and consequently the most crowded stations
are often located in highly populated areas. At the same time, however,
our index carries additional and more “dynamic” information. Aedes
mosquitos (Ae. Aegypti and Ae. albopictus) are known to be diurnal
feeders (Carrington et al., 2013; Farajollahi et al., 2012). It is exactly
during the daytime that people living in proximity of one or more
busy stations can come into contact with a number of individuals
(students, workers, etc.), which is potentially even larger than the pop-
ulation itself, thus increasing the infection probability. In other words,
the RAMPP index somehow incorporates and extends the information
related to the population density, and such consideration is consistent
with the fact that the correlation between RAMPP and dengue incidence
is greater than the correlation between population density and dengue
incidence.

By examining the geographic pattern of yearly incidence rate in
2014 (Fig. 2), it can be observed that all Li's with at least 1000 infections
per 100,000 inhabitants are located in the central area in the districts of
Yancheng, Sanmin, Xinxing, Lingya, Qianzhen, and Fengshan. The only
exceptions are two Li's in Xiaogang district, close to Kaohsiung Interna-
tional Airport, and one Li in Nanzi district. It is interesting to note that
most of these Li's are located along the southern branch of the Red
Line (from Houyi station to Siaogang station) or the central-western
branch of the Orange Line (from Yanchengpu station toWeiwuying sta-
tion). One can make similar observations regarding the 2015 epidemic
(Fig. 2). Due to the larger amount of cases recorded, the number of Li's
with an elevated incidence rate obviously increases in 2015; however,



Fig. 6.Mean value of yearly dengue incidence rate by RAMPP-based cluster, for K= 3 (on the left) and for K= 4 (on the right). Blue bars with a red border refer to 2014 data; orange bars
with a black border refer to 2015 data.
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their spatial distribution at district level is almost the same. With re-
spect to 2014, only a couple of Li's with incidence rate N 1500 are regis-
tered in both Gushan and Zuoying district.

The geographic patterns of the RAMPP index in 2014 and in 2015
(Fig. 5) are clearly almost identical, as the number of passengers does
not changemuch from one year to another. Considering the four cluster
solution, we note that the Li's belonging to Cluster 4 are located around
the following six stations: Houyi, Kaohsiung Main Station, Formosa
Boulevard, City Council, Central Park, and Sanduo Shopping District.
Moreover, districts that include at least one Li belonging to Cluster 3
or Cluster 4 are Zuoying, Gushan, Sanmin, Yancheng, Qianjin, Xinxing,
Lingya, Qianzhen, and Xiaogang. Except for Qianjin, all these districts
have been cited in the previous paragraph as the districts including
Li's with the highest level of yearly incidence rate.

Naturally, the areaswith the highest incidence do not perfectly corre-
spond to the ones with the highest RAMPP, because a perfect match
would require the existence of a relationship between dengue incidence
and RAMPP much tighter than the one emerged from this study. The
Dunn's tests performed on the RAMPP-based clusters show that, on
average, the yearly incidence rate is significantly higher, where the risk
associated with the presence of KRT stations is elevated. In fact, despite
the number of cases reported during the 2014 outbreak was lower
than that in 2015, and considering two different clustering solutions,
the statistical analyses produce largely consistent results (Tables 3–6),
showing that the Li's with the highest RAMMP exhibit (on average) the
highest yearly incidence rate.Moreover, for both epidemics, the behavior
of the average incidence rate is monotonic, with respect to the RAMPP-
based clustering (Fig. 6), corroborating the idea that the RAMMP index
that we propose can be effectively employed as criterion for the identifi-
cation of high/low risk areas.

The evaluation of the impact of the KRT system on the spreading of
dengue in Kaohsiung highlights substantial disparity in the role KRT sta-
tions play in disease diffusion, and that actual passenger volume of each
station is a key to obtaining reasonable results. During these two years,
the KRT subway lines served around 60million passengers per year, but
Table 3
Year 2014 - Dunn's test result for K = 3: pairwise comparison of yearly incidence rate by
RAMPP-based cluster (with Šidák adjustment).

Column mean - row mean Cluster 3 Cluster 1
p-Value

Cluster 1 426.44
0.0000⁎

Cluster 2 336.09 −90.34
0.0092⁎ 0.1253

⁎ p-value b 0.05.
the distribution of traffic volume was far from homogeneous. Indeed,
the two busiest KRT stations in Kaohsiung, namely “Kaohsiung Main
Station” and “Zuoying” (the latter of which links the KRT with the
Taiwan High Speed Rail System), accounted for N10 million passengers
each per year. While the two least frequented ones (“Qingpu” and
“Qiaotou Sugar Refinery”) had around 650,000 passengers (data source:
KCGSTAT, 2016). The RAMPP serves the purpose of capturing such “in-
fluence variation”, reflecting the simple but important idea that a large
amount of passenger flow in and out of a station can dramatically in-
crease the contagion risk in the neighborhoods. While on the other
hand, a sporadically used station is unlikely to be able to substantially
impact the spreading process.

Our findings could have important public health implications. In the
aftermath of 2003 Severe Acute Respiratory Syndrome (SARS) epidem-
ic, several countries such as Singapore and Taiwan introduced non-
contact infrared thermometers (NCIT) at border control such as airports
in order to detect febrile passengers, in an attempt to detect imported
dengue cases or to delay the introduction of a novel influenza strain
(Bitar et al., 2009). A recent study in Taiwan (Chang et al., 2016) indi-
cates that in recent years, close to half of the imported dengue cases in
Taiwan were detected at border every year (Fig. 7), providing evidence
for its effectiveness in detection of early cases. Epidemiologic investiga-
tion by Taiwan CDC indicates that almost 98% of the reported cases in
Kaohsiung were infected locally in their Li of residence. Our study,
showing the significant role that mass transportation system could
play in dissemination of disease, would suggest that establishing similar
NCIT sites at the busiest KRT stations could be very effective in early de-
tection of dengue cases, and subsequently reduce local transmissions in
the nearby communities.

This study certainly has its limitations, which need to be noted. First,
the dataset used to evaluate the proposedmethodology pertains only to
one city, Kaohsiung, mainly because it is difficult to gather locality, mass
transportation, and disease incidence datawith the requireddetail level.
Moreover, analysis was performed for two epidemics (in 2014 and
2015), because the KRT system only began to operate in 2008, and
Table 4
Year 2015 - Dunn's test result for K = 3: pairwise comparison of yearly incidence rate by
RAMPP-based cluster (with Šidák adjustment).

Column mean - row mean Cluster 3 Cluster 1
p-Value

Cluster 1 433.08
0.0002⁎

Cluster 2 99.48 −333.60
0.1948 0.0052⁎

⁎ p-value b 0.05.



Fig. 7. Yearly number of imported dengue cases and the number (percentage) detected at
border in Taiwan, 2010–2014.
(Source: Chang et al., 2016).

Table 5
Year 2014 - Dunn's test result for K = 4: pairwise comparison of yearly incidence rate by
RAMPP-based cluster (with Šidák adjustment).

Column mean - row mean Cluster 3 Cluster 1 Cluster 2
p-Value

Cluster 1 216.07
0.0101⁎

Cluster 2 105.66 −110.41
0.2961 0.3988

Cluster 4 −297.70 −513.77 −403.36
0.1700 0.0000⁎ 0.0033⁎

⁎ p-value b 0.05.
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during 2008–2013 no major dengue outbreaks occurred in Kaohsiung.
Secondly, the K-means method adopted to cluster the Li's based on
their RAMPP value is strictly statistical. Further applications of the
RAMPP index could conceivably help to better define its properties,
and consequently resulting in a less “aseptic” clustering procedure.

Moreover, a number of confounding factors could have influenced
the results outlined here. In addition to the role of population density,
which has already been addressed, the presence of popular meeting
places (shoppingmalls, tourist spots, schools, etc.) or potential mosqui-
to breeding sites in the vicinity of the KRT stations could have increased
the infection rate in that areas, more than the traffic volume. However,
unlike traffic volume, it is very difficult to quantify the number of people
actually visiting those places (even on a yearly basis), and consequently
the transmission risk. Furthermore, it is sensible to assume that the KRT
stations are often located in the proximity of popular meeting places
(or vice versa). Therefore, the RAMPP index, taking into account of the
distance, could implicitly include this information as well as population
density. In any case, the approach adopted in this paper is strictly
empirical, as our aim is to highlight the statistically based relationship
detected between dengue incidence and the RAMPP index, which
can certainly be exploited for practical purposes by public health
decision-makers.
5. Conclusion

The diffusion of an infectious disease is a very complex phenomenon,
depending on a huge number of factors. Public transportation system is
just one of them and its weight can vary from one outbreak to another,
as every year the conditions could change, magnifying or diminishing
the impact of all the variables at play. Consequently, it would be unreal-
istic to expect from a straightforward quantifier, such as the proposed
RAMPP, to be able to capture fully the intricate variability of each epi-
demic under any conditions.

Despite these aforementioned limitations, the close similarity of the
results obtained from data of two different years is a promising indica-
tion of the usefulness of our proposed index, and provides motivation
to investigate its applicability through further studies. Enhancing our
understanding of how public rapid transit system contributes to disease
spread in densely populated urban areas, could be useful in thedesign of
Table 6
Year 2015 - Dunn's test result for K = 4: pairwise comparison of yearly incidence rate by
RAMPP-based cluster (with Šidák adjustment).

Column mean - row mean Cluster 3 Cluster 1 Cluster 2
p-Value

Cluster 1 407.36
0.0078⁎

Cluster 2 306.33 −101.03
0.2326 0.4514

Cluster 4 −38.51 −445.87 −344.84
0.5081 0.0006⁎ 0.0226⁎

⁎ p-value b 0.05.
more effective and timely intervention and control measures for future
outbreaks.
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Appendix A. Supplementary data

The files 2014.kmz and 2015.kmz display simultaneously the yearly
incidence rate and the RAMPP-based cluster each Li belongs to, for the
case K = 4. They represent, for each year, the yearly incidence rate
class with different colors, and the RAMPP-based cluster by “lifting”
each element at four different altitudes. Please note that for a correct
3D visualization, the files must be downloaded in a local folder and
opened with Google Earth, which needs to be installed. Supplementary
data associated with this article can be found in the online version, at
http://dx.doi.org/10.1016/j.scitotenv.2017.04.050. These data include
the Google Maps of the most important areas described in this article.
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